-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathqlearn2.py
53 lines (41 loc) · 1.38 KB
/
qlearn2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
### Ashwin Jeyaseelan
### Q-Learning with E-Greedy Selection
import random
import gym
from gym import wrappers
env = gym.make('Taxi-v1')
env = gym.wrappers.Monitor(env, "gym_results", force=True)
q = {}
for s in range(env.observation_space.n):
for a in range(env.action_space.n):
q[(s,a)] = 0.0
# update q table:
def update(state, action, reward, nextstate, alpha, gamma):
# select action that yields greatest stored value for nextstate and store its value
qa = max([q[(nextstate, a)] for a in range(env.action_space.n)])
q[(state,action)] += alpha * (reward + gamma * qa - q[(state,action)])
# used e-greedy to select action to take
def epsilon_greedy(state, epsilon):
if random.uniform(0,1) < epsilon:
return env.action_space.sample()
else: #takes list of actions,lambda function finds action with max value
return max(list(range(env.action_space.n)), key = lambda x: q[(state,x)])
alpha = 0.4
gamma = 0.999
epsilon = 0.017
r = 0
for _ in range(8000):
r = 0
state = env.reset()
while True:
#env.render()
action = epsilon_greedy(state, epsilon)
newstate, reward, done, _ = env.step(action)
update(state, action, reward, newstate, alpha, gamma)
state = newstate
r += reward
if done:
break
print("total reward: ", r)
env.close()
gym.upload('gym_results', api_key="####")