-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathBubbleSort.java
65 lines (58 loc) · 2 KB
/
BubbleSort.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
package sort;
import java.util.Arrays;
public class BubbleSort {
/*
* 1. Bubble sort is the simplest sorting algorithm that compares two adjacent elements in an array and swaps the largest of the two values to the end.
* 2. The worst case time complexity of bubble sort is O(n2): this is because for each iteration n-1 comparisons will be done.
* 3. The best case time complexity will be O(n): this is when the list is already sorted
* 4. The space time complexity will be O(1): since only one memory space is required for the temp variable.
*
* Key Points
* -> Bubble sort is in place and stable sorting algorithm.
* */
public static int[] bubbleSort(int[] arr) {
if(arr.length == 1) return arr;
for(int i=0; i<arr.length-1; i++) {
for(int j=0; j<arr.length-i-1; j++) {
if(arr[j] > arr[j+1]) {
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
return arr;
}
public static void main(String[] args) {
int[] arr = {55, 23, 26, 2, 25};
System.out.print(Arrays.toString(bubbleSort(arr)));
}
}
/*
The above function always runs O(n^2) time even if the array is sorted.
It can be optimized by stopping the algorithm if inner loop didn’t cause any swap.
// An optimized version of Bubble Sort
static void bubbleSort(int arr[], int n)
{
int i, j, temp;
boolean swapped;
for (i = 0; i < n - 1; i++)
{
swapped = false;
for (j = 0; j < n - i - 1; j++)
{
if (arr[j] > arr[j + 1])
{
// swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// IF no two elements were
// swapped by inner loop, then break
if (swapped == false)
break;
}
}*/