-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
152 lines (138 loc) · 5.33 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Header-only C++ implementation of LRU cache with all the gems.
// Features: thread safety, serialization, memory monitoring, statistics, etc.
// SPDX-FileCopyrightText: Copyright © 2024 Anatoly Petrov <[email protected]>
// SPDX-License-Identifier: MIT
// LRU cache usage example.
// Here, we show how to use the LRU cache to reduce DB reads.
#include <algorithm>
#include <array>
#include <format>
#include <fstream>
#include <iostream>
#include <unordered_map>
#include "lru_cache.h"
// Model fields.
using Id = size_t;
using Name = std::array<char, 42>;
// User model.
struct User {
Id id;
Name name;
};
// Fake database.
static std::unordered_map<Id, User> db;
// Thread-safe cache.
static lru::SafeCache<Id, User> cache;
// User serialization/deserialization.
// To make things work, we only need to provide lru::serde::Serde specialization
// for the User type. This is a simple task because specializations for the integral types
// and integral sequences are already implemented (see 'lru_cache/serde.h').
// Use them as building blocks.
template<>
struct lru::serde::Serde<User> {
// Converts the User object to row bytes.
static Bytes Serialize(const User &user) {
Bytes buf;
// id
Bytes id = Serde<Id>::Serialize(user.id);
buf.insert(buf.end(), id.begin(), id.end());
// name
Bytes name = Serde<Name>::Serialize(user.name);
buf.insert(buf.end(), user.name.begin(), user.name.end());
return buf;
}
// Converts chunk of row bytes to the User object.
static User Deserialize(const View chunk) {
// id
Id id = Serde<Id>::Deserialize({chunk.begin(), sizeof(Id)});
// name
Name name;
auto first = chunk.begin() + sizeof(Id);
auto last = first + sizeof(Name);
std::copy(first, last, name.begin());
return {id, name};
}
};
// Saves user to DB (highly costly, but we haven't alternatives).
void SaveUserDb(const User &user) {
std::cout << "DB: save User id=" << user.id << std::endl;
db[user.id] = user;
}
// Loads user from DB (also costly, but we do have an alternative - read from cache).
User LoadUserDb(size_t id) {
std::cout << "DB: load User id=" << id << std::endl;
return db.at(id);
}
// Receives POST request (just mock).
User ReceivePostRequest(const User &user) {
std::cout << "Request: POST example.com/user/new/";
std::cout << std::format("Body: {id={}, name={}}", user.id, user.name);
std::cout << std::endl;
return user;
}
// Receives GET request (another one mock).
size_t ReceiveGetRequest(size_t id) {
std::cout << "Request: GET example.com/user/" << id << std::endl;
return id;
}
int main(int, char *[]) {
// Assume we are dealing with HTTP requests, and the code below is inside our REST API endpoints.
// We have a pool of workers to process HTTP requests in parallel, so our code should be thread-safe.
// Let's try to use the LRU cache to reduce the number of DB reads.
// ...
// Request: POST example.com/user/new (create a new User)
// JSON body: {"id"=123, "name"="John Smith"}
{
User new_user = ReceivePostRequest({123, "John Smith"});
SaveUserDb(new_user);
cache.Set(new_user.id, new_user);
}
// ...
// Request: GET example/com/user/123 (find the User with id=123)
{
Id id = ReceiveGetRequest(123);
// Here, the 'user' variable is, in fact, a RAII wrapper that encapsulates both
// a reference to the cached User object and std::unique_lock with the acquired cache mutex.
// Thus, while the 'user' variable exists, the cache mutex is locked, which excludes
// possible data races on 'user'.
auto user = cache.Get(id);
if (user) {
// The user is cached, so no DB request is needed.
std::cout << "No DB request, User loaded from the cache!" << '\n';
// ...
} else {
// The user is not found in the cache; a DB request is needed.
User db_user = LoadUserDb(id);
cache.Set(db_user.id, db_user);
// ...
}
}
// ...
// We can print cache items and stats.
std::cout << "\nInfo:\n" << cache;
// Or save our cache to a file...
std::fstream f("temp.txt",
std::ios::trunc | std::ios::binary | std::ios::in |
std::ios::out);
assert(f.is_open());
cache.Dump(std::ostreambuf_iterator(f));
// ...clear the cache...
cache.Flush();
// ...set new limits...
cache.Maxmem(cache.kItemMem);
cache.Maxsize(1);
// ...and reload it.
f.seekp(0);
cache.Load(std::istreambuf_iterator(f), std::istreambuf_iterator<char>());
std::cout << "\nAfter dump:\n" << cache;
// [Anti-pattern]
// ...or print the cached item in a non thread-safe manner :(
// (Don't do this! Code below is not thread-safe, because ScopeGuard, returned by cache.Get(),
// is used only as a temporary object. When this temporary destroys, cache mutex releases).
auto user = cache.Get(123).value().get();
// (Here, cache mutex has already been released, so we may get a dangling reference
// instead of a User object if this User will be deleted from the cache by another thread)
std::cout << "\nValue at key == 123:";
std::cout << " {" << user.id << " " << user.name.data() << "}";
return 0;
}