Skip to content

Commit 0adbe9e

Browse files
authored
Final version
1 parent 0be2582 commit 0adbe9e

File tree

1 file changed

+57
-48
lines changed

1 file changed

+57
-48
lines changed

opencv.py

+57-48
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,34 @@
11
import cv2
2-
from matplotlib import pyplot as plt
3-
import numpy as np
2+
import numpy as np
43
from keras.models import load_model
4+
from skimage.transform import resize, pyramid_reduce
55

66
model = load_model('model.h5')
77

8+
def get_square(image, square_size):
9+
10+
height, width = image.shape
11+
if(height > width):
12+
differ = height
13+
else:
14+
differ = width
15+
differ += 4
16+
17+
18+
mask = np.zeros((differ, differ), dtype = "uint8")
19+
20+
x_pos = int((differ - width) / 2)
21+
y_pos = int((differ - height) / 2)
22+
23+
24+
mask[y_pos: y_pos + height, x_pos: x_pos + width] = image[0: height, 0: width]
25+
26+
27+
if differ / square_size > 1:
28+
mask = pyramid_reduce(mask, differ / square_size)
29+
else:
30+
mask = cv2.resize(mask, (square_size, square_size), interpolation = cv2.INTER_AREA)
31+
return mask
832

933

1034
def keras_predict(model, image):
@@ -14,66 +38,51 @@ def keras_predict(model, image):
1438
pred_class = list(pred_probab).index(max(pred_probab))
1539
return max(pred_probab), pred_class
1640

17-
18-
1941
def keras_process_image(img):
42+
2043
image_x = 28
2144
image_y = 28
22-
img = cv2.resize(img, (image_x, image_y))
23-
img = np.array(img, dtype=np.float32)
24-
img = np.reshape(img, (-1, image_x, image_y, 1))
25-
return img
26-
27-
28-
29-
30-
31-
32-
33-
def sketch_transform(image):
34-
image_grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
35-
image_grayscale_blurred = cv2.GaussianBlur(image_grayscale, (15,15), 0)
45+
#img = cv2.resize(img, (28,28), interpolation = cv2.INTER_AREA)
46+
img = get_square(img, 28)
47+
img = np.reshape(img, (image_x, image_y))
3648

3749

38-
return image_grayscale_blurred
39-
40-
41-
42-
43-
cam_capture = cv2.VideoCapture(0)
44-
45-
upper_left = (300, 300)
46-
bottom_right = (1084, 1084)
47-
50+
return img
51+
4852

53+
def crop_image(image, x, y, width, height):
54+
return image[y:y + height, x:x + width]
4955

50-
while True:
56+
while True:
5157
cam_capture = cv2.VideoCapture(0)
58+
_, image_frame = cam_capture.read()
59+
# Select ROI
60+
im2 = crop_image(image_frame, 300,300,300,300)
61+
image_grayscale = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
62+
image_grayscale_blurred = cv2.GaussianBlur(image_grayscale, (15,15), 0)
5263

53-
upper_left = (300, 300)
54-
bottom_right = (1084, 1084)
5564

56-
_, image_frame = cam_capture.read()
57-
58-
#Rectangle marker
59-
r = cv2.rectangle(image_frame, upper_left, bottom_right, (100, 50, 200), 5)
60-
rect_img = image_frame[upper_left[1] : bottom_right[1], upper_left[0] : bottom_right[0]]
61-
62-
sketcher_rect = rect_img
63-
sketcher_rect = sketch_transform(sketcher_rect)
64-
65-
66-
67-
cv2.resize(sketcher_rect, (28,28), interpolation = cv2.INTER_AREA)
68-
pred_probab, pred_class = keras_predict(model, sketcher_rect)
69-
print(pred_class, pred_probab)
70-
cv2.imshow('image_frame',sketcher_rect)
65+
#resized_img = image_resize(image_grayscale_blurred, width = 28, height = 28, inter = cv2.INTER_AREA)
66+
#resized_img = keras_process_image(image_grayscale_blurred)
67+
resized_img = cv2.resize(image_grayscale_blurred,(28,28))
68+
#ar = np.array(resized_img)
69+
ar = resized_img.reshape(1,784)
7170

71+
pred_probab, pred_class = keras_predict(model, ar )
72+
print(pred_class, pred_probab)
73+
7274

75+
76+
# Display cropped image
77+
78+
cv2.imshow("Image2",im2)
79+
cv2.imshow("Image4",resized_img)
80+
cv2.imshow("Image3",image_grayscale_blurred)
7381

7482
if cv2.waitKey(25) & 0xFF == ord('q'):
7583
cv2.destroyAllWindows()
7684
break
77-
85+
86+
7887
cam_capture.release()
79-
cv2.destroyAllWindows()
88+
cv2.destroyAllWindows()

0 commit comments

Comments
 (0)