|
| 1 | +# Convolutional Neural Network |
| 2 | + |
| 3 | +# Installing Theano |
| 4 | +# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git |
| 5 | + |
| 6 | +# Installing Tensorflow |
| 7 | +# Install Tensorflow from the website: https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html |
| 8 | + |
| 9 | +# Installing Keras |
| 10 | +# pip install --upgrade keras |
| 11 | + |
| 12 | +# Part 1 - Building the CNN |
| 13 | + |
| 14 | +# Importing the Keras libraries and packages |
| 15 | +from keras.models import Sequential |
| 16 | +from keras.layers import Convolution2D |
| 17 | +from keras.layers import MaxPooling2D |
| 18 | +from keras.layers import Flatten |
| 19 | +from keras.layers import Dense |
| 20 | + |
| 21 | +# Initialising the CNN |
| 22 | +classifier = Sequential() |
| 23 | + |
| 24 | +# Step 1 - Convolution |
| 25 | +classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu')) |
| 26 | + |
| 27 | +# Step 2 - Pooling |
| 28 | +classifier.add(MaxPooling2D(pool_size = (2, 2))) |
| 29 | + |
| 30 | +# Adding a second convolutional layer |
| 31 | +classifier.add(Convolution2D(32, 3, 3, activation = 'relu')) |
| 32 | +classifier.add(MaxPooling2D(pool_size = (2, 2))) |
| 33 | + |
| 34 | +# Step 3 - Flattening |
| 35 | +classifier.add(Flatten()) |
| 36 | + |
| 37 | +# Step 4 - Full connection |
| 38 | +classifier.add(Dense(output_dim = 128, activation = 'relu')) |
| 39 | +classifier.add(Dense(output_dim = 1, activation = 'sigmoid')) |
| 40 | + |
| 41 | +# Compiling the CNN |
| 42 | +classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) |
| 43 | + |
| 44 | +# Part 2 - Fitting the CNN to the images |
| 45 | + |
| 46 | +from keras.preprocessing.image import ImageDataGenerator |
| 47 | + |
| 48 | +train_datagen = ImageDataGenerator(rescale = 1./255, |
| 49 | + shear_range = 0.2, |
| 50 | + zoom_range = 0.2, |
| 51 | + horizontal_flip = True) |
| 52 | + |
| 53 | +test_datagen = ImageDataGenerator(rescale = 1./255) |
| 54 | + |
| 55 | +training_set = train_datagen.flow_from_directory('test_dataset/training_set', |
| 56 | + target_size = (64, 64), |
| 57 | + batch_size = 32, |
| 58 | + class_mode = 'binary') |
| 59 | + |
| 60 | +test_set = test_datagen.flow_from_directory('test_dataset/test_set', |
| 61 | + target_size = (64, 64), |
| 62 | + batch_size = 32, |
| 63 | + class_mode = 'binary') |
| 64 | + |
| 65 | +classifier.fit_generator(training_set, |
| 66 | + samples_per_epoch = 8000, |
| 67 | + nb_epoch = 25, |
| 68 | + validation_data = test_set, |
| 69 | + nb_val_samples = 2000) |
0 commit comments