-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
128 lines (82 loc) · 3.22 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import random
import torch
from torch.autograd import Variable
from PIL import Image
def load_image(filename):
# Load and Return the Image.
image = Image.open(filename)
return image
def save_image(filename, data):
# Save the Image.
image_data = data.clone().clamp(0, 255).numpy()
image_data = image_data.transpose(1, 2, 0).astype("uint8")
image = Image.fromarray(image_data)
image.save(filename)
def compute_gram_matrix(input_batch):
# Compute the gram matrix of the input batch.
(b, ch, h, w) = input_batch.size()
features = input_batch.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram_matrix = features.bmm(features_t) / (ch * h * w)
return gram_matrix
def normalize_image_batch(input_batch):
# Normalize the Batch using the ImageNet Mean and STD.
mean = input_batch.data.new(input_batch.data.size())
std = input_batch.data.new(input_batch.data.size())
mean[:, 0, :, :] = 0.485
mean[:, 1, :, :] = 0.456
mean[:, 2, :, :] = 0.406
std[:, 0, :, :] = 0.229
std[:, 1, :, :] = 0.224
std[:, 2, :, :] = 0.225
input_batch = torch.div(input_batch, 255.0)
input_batch -= Variable(mean)
input_batch = input_batch / Variable(std)
return input_batch
def normalize_image(input_image):
# Normalize the Image using the ImageNet Mean and STD.
mean = input_image.data.new(input_image.size())
std = input_image.data.new(input_image.size())
mean[0, :, :] = 0.485
mean[1, :, :] = 0.456
mean[2, :, :] = 0.406
std[0, :, :] = 0.229
std[1, :, :] = 0.224
std[2, :, :] = 0.225
input_image = torch.div(input_image, 255.0)
input_image -= Variable(mean)
input_image = input_image / Variable(std)
return input_image
def zero_pixel_mean_image_batch(input_batch):
# Zero out the Pixel Mean of the Image Batch. (Batch * Channels * Width * Height)
input_batch_size = input_batch.size()
# Get a view of all the pixels in each of the channels.
input_batch_view = input_batch.view(input_batch_size[0], input_batch_size[1], input_batch_size[2] * input_batch_size[3])
# Compute the mean.
input_batch_view_mean = input_batch_view.mean(2)
# Reshape the view to a tensor.
input_batch_view_mean = input_batch_view_mean.unsqueeze(2).unsqueeze(3)
# Get the Input Batch Mean.
input_batch_mean = input_batch_view_mean.repeat(1, 1, input_batch_size[2], input_batch_size[3])
# Return the Zero Pixel Mean Image Batch.
return torch.div(input_batch - input_batch_mean, input_batch_size[0])
def fully_shuffled_order(input_order):
# Shuffle the order till all the indices are different.
copy_order = input_order[:]
# Keep going until all the indices are different.
while True:
# Shuffle.
random.shuffle(copy_order)
# Reset the condition.
is_shuffled = True
# Go through the order.
for i in range(len(input_order)):
# Check if indices match.
if input_order[i] == copy_order[i]:
is_shuffled = False
break
# Check if we are shuffled.
if is_shuffled:
break
# Return the copy order.
return copy_order