forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanet_pipeline.py
150 lines (130 loc) · 5.64 KB
/
anet_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
from ..registry import PIPELINES
"""pipeline ops for Activity Net.
"""
@PIPELINES.register()
class LoadFeat(object):
def __init__(self, feat_path):
self.feat_path = feat_path
def __call__(self, results):
video_name = results['video_name']
file_name = video_name + ".npy"
file_path = os.path.join(self.feat_path, file_name)
#TODO: check path
video_feat = np.load(file_path)
video_feat = video_feat.T
video_feat = video_feat.astype("float32")
results['video_feat'] = video_feat
return results
@PIPELINES.register()
class GetMatchMap(object):
def __init__(self, tscale):
self.tscale = tscale
self.tgap = 1. / self.tscale
def __call__(self, results):
match_map = []
for idx in range(self.tscale):
tmp_match_window = []
xmin = self.tgap * idx
for jdx in range(1, self.tscale + 1):
xmax = xmin + self.tgap * jdx
tmp_match_window.append([xmin, xmax])
match_map.append(tmp_match_window)
match_map = np.array(match_map)
match_map = np.transpose(match_map, [1, 0, 2])
match_map = np.reshape(match_map, [-1, 2])
anchor_xmin = [self.tgap * i for i in range(self.tscale)]
anchor_xmax = [self.tgap * i for i in range(1, self.tscale + 1)]
results['match_map'] = match_map
results['anchor_xmin'] = anchor_xmin
results['anchor_xmax'] = anchor_xmax
return results
@PIPELINES.register()
class GetVideoLabel(object):
def __init__(self, tscale, dscale, datatype="float32"):
self.tscale = tscale
self.dscale = dscale
self.tgap = 1. / self.tscale
self.datatype = datatype
def iou_with_anchors(self, anchors_min, anchors_max, box_min, box_max):
"""Compute jaccard score between a box and the anchors.
"""
len_anchors = anchors_max - anchors_min
int_xmin = np.maximum(anchors_min, box_min)
int_xmax = np.minimum(anchors_max, box_max)
inter_len = np.maximum(int_xmax - int_xmin, 0.)
union_len = len_anchors - inter_len + box_max - box_min
jaccard = np.divide(inter_len, union_len)
return jaccard
def ioa_with_anchors(self, anchors_min, anchors_max, box_min, box_max):
"""Compute intersection between score a box and the anchors.
"""
len_anchors = anchors_max - anchors_min
int_xmin = np.maximum(anchors_min, box_min)
int_xmax = np.minimum(anchors_max, box_max)
inter_len = np.maximum(int_xmax - int_xmin, 0.)
scores = np.divide(inter_len, len_anchors)
return scores
def __call__(self, results):
video_info = results['video_info']
match_map = results['match_map']
anchor_xmin = results['anchor_xmin']
anchor_xmax = results['anchor_xmax']
video_second = video_info['duration_second']
video_labels = video_info['annotations']
gt_bbox = []
gt_iou_map = []
for gt in video_labels:
tmp_start = max(min(1, gt["segment"][0] / video_second), 0)
tmp_end = max(min(1, gt["segment"][1] / video_second), 0)
gt_bbox.append([tmp_start, tmp_end])
tmp_gt_iou_map = self.iou_with_anchors(match_map[:, 0],
match_map[:, 1], tmp_start,
tmp_end)
tmp_gt_iou_map = np.reshape(tmp_gt_iou_map,
[self.dscale, self.tscale])
gt_iou_map.append(tmp_gt_iou_map)
gt_iou_map = np.array(gt_iou_map)
gt_iou_map = np.max(gt_iou_map, axis=0)
gt_bbox = np.array(gt_bbox)
gt_xmins = gt_bbox[:, 0]
gt_xmaxs = gt_bbox[:, 1]
gt_len_small = 3 * self.tgap
gt_start_bboxs = np.stack(
(gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1)
gt_end_bboxs = np.stack(
(gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1)
match_score_start = []
for jdx in range(len(anchor_xmin)):
match_score_start.append(
np.max(
self.ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx],
gt_start_bboxs[:, 0],
gt_start_bboxs[:, 1])))
match_score_end = []
for jdx in range(len(anchor_xmin)):
match_score_end.append(
np.max(
self.ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx],
gt_end_bboxs[:, 0], gt_end_bboxs[:,
1])))
gt_start = np.array(match_score_start)
gt_end = np.array(match_score_end)
results['gt_iou_map'] = gt_iou_map.astype(self.datatype)
results['gt_start'] = gt_start.astype(self.datatype)
results['gt_end'] = gt_end.astype(self.datatype)
return results