forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode_sampler.py
93 lines (82 loc) · 3.5 KB
/
decode_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
from PIL import Image
import decord as de
from ..registry import PIPELINES
@PIPELINES.register()
class DecodeSampler(object):
"""
We use 'decord' for decode and sampling, which is faster than opencv.
This is used in slowfast model.
Args:
num_frames(int): the number of frames we want to sample.
sampling_rate(int): sampling rate for video data.
target_fps(int): desired fps, default 30
test_mode(bool): whether test or train/valid. In slowfast, we use multicrop when test.
"""
def __init__(self,
num_frames,
sampling_rate,
default_sampling_rate=2,
target_fps=30,
test_mode=False):
self.num_frames = num_frames
self.orig_sampling_rate = self.sampling_rate = sampling_rate
self.default_sampling_rate = default_sampling_rate
self.target_fps = target_fps
self.test_mode = test_mode
def get_start_end_idx(self, video_size, clip_size, clip_idx,
temporal_num_clips):
delta = max(video_size - clip_size, 0)
if not self.test_mode:
# Random temporal sampling.
start_idx = random.uniform(0, delta)
else:
# Uniformly sample the clip with the given index.
start_idx = delta * clip_idx / temporal_num_clips
end_idx = start_idx + clip_size - 1
return start_idx, end_idx
def __call__(self, results):
"""
Perform mp4 decode operations.
return:
List where each item is a numpy array after decoder.
"""
short_cycle_idx = results.get('short_cycle_idx')
if short_cycle_idx:
self.sampling_rate = random.randint(self.default_sampling_rate,
self.orig_sampling_rate)
filepath = results['filename']
temporal_sample_index = results['temporal_sample_index']
temporal_num_clips = results['temporal_num_clips']
vr = de.VideoReader(filepath)
videolen = len(vr)
fps = vr.get_avg_fps()
clip_size = self.num_frames * self.sampling_rate * fps / self.target_fps
start_idx, end_idx = self.get_start_end_idx(videolen, clip_size,
temporal_sample_index,
temporal_num_clips)
index = np.linspace(start_idx, end_idx, self.num_frames).astype("int64")
index = np.clip(index, 0, videolen)
frames_select = vr.get_batch(index) #1 for buffer
# dearray_to_img
np_frames = frames_select.asnumpy()
frames_select_list = []
for i in range(np_frames.shape[0]):
imgbuf = np_frames[i]
frames_select_list.append(Image.fromarray(imgbuf, mode='RGB'))
results['imgs'] = frames_select_list
return results