forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbmn.py
290 lines (260 loc) · 10.4 KB
/
bmn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
from paddle import ParamAttr
from ..registry import BACKBONES
def _get_interp1d_bin_mask(seg_xmin, seg_xmax, tscale, num_sample,
num_sample_perbin):
""" generate sample mask for a boundary-matching pair """
plen = float(seg_xmax - seg_xmin)
plen_sample = plen / (num_sample * num_sample_perbin - 1.0)
total_samples = [
seg_xmin + plen_sample * ii
for ii in range(num_sample * num_sample_perbin)
]
p_mask = []
for idx in range(num_sample):
bin_samples = total_samples[idx * num_sample_perbin:(idx + 1) *
num_sample_perbin]
bin_vector = np.zeros([tscale])
for sample in bin_samples:
sample_upper = math.ceil(sample)
sample_decimal, sample_down = math.modf(sample)
if (tscale - 1) >= int(sample_down) >= 0:
bin_vector[int(sample_down)] += 1 - sample_decimal
if (tscale - 1) >= int(sample_upper) >= 0:
bin_vector[int(sample_upper)] += sample_decimal
bin_vector = 1.0 / num_sample_perbin * bin_vector
p_mask.append(bin_vector)
p_mask = np.stack(p_mask, axis=1)
return p_mask
def get_interp1d_mask(tscale, dscale, prop_boundary_ratio, num_sample,
num_sample_perbin):
""" generate sample mask for each point in Boundary-Matching Map """
mask_mat = []
for start_index in range(tscale):
mask_mat_vector = []
for duration_index in range(dscale):
if start_index + duration_index < tscale:
p_xmin = start_index
p_xmax = start_index + duration_index
center_len = float(p_xmax - p_xmin) + 1
sample_xmin = p_xmin - center_len * prop_boundary_ratio
sample_xmax = p_xmax + center_len * prop_boundary_ratio
p_mask = _get_interp1d_bin_mask(sample_xmin, sample_xmax,
tscale, num_sample,
num_sample_perbin)
else:
p_mask = np.zeros([tscale, num_sample])
mask_mat_vector.append(p_mask)
mask_mat_vector = np.stack(mask_mat_vector, axis=2)
mask_mat.append(mask_mat_vector)
mask_mat = np.stack(mask_mat, axis=3)
mask_mat = mask_mat.astype(np.float32)
sample_mask = np.reshape(mask_mat, [tscale, -1])
return sample_mask
def init_params(name, in_channels, kernel_size):
fan_in = in_channels * kernel_size * 1
k = 1. / math.sqrt(fan_in)
param_attr = ParamAttr(name=name,
initializer=paddle.nn.initializer.Uniform(low=-k,
high=k))
return param_attr
@BACKBONES.register()
class BMN(paddle.nn.Layer):
"""BMN model from
`"BMN: Boundary-Matching Network for Temporal Action Proposal Generation" <https://arxiv.org/abs/1907.09702>`_
Args:
tscale (int): sequence length, default 100.
dscale (int): max duration length, default 100.
prop_boundary_ratio (float): ratio of expanded temporal region in proposal boundary, default 0.5.
num_sample (int): number of samples betweent starting boundary and ending boundary of each propoasl, default 32.
num_sample_perbin (int): number of selected points in each sample, default 3.
"""
def __init__(
self,
tscale,
dscale,
prop_boundary_ratio,
num_sample,
num_sample_perbin,
feat_dim=400,
):
super(BMN, self).__init__()
#init config
self.feat_dim = feat_dim
self.tscale = tscale
self.dscale = dscale
self.prop_boundary_ratio = prop_boundary_ratio
self.num_sample = num_sample
self.num_sample_perbin = num_sample_perbin
self.hidden_dim_1d = 256
self.hidden_dim_2d = 128
self.hidden_dim_3d = 512
# Base Module
self.b_conv1 = paddle.nn.Conv1D(
in_channels=self.feat_dim,
out_channels=self.hidden_dim_1d,
kernel_size=3,
padding=1,
groups=4,
weight_attr=init_params('Base_1_w', self.feat_dim, 3),
bias_attr=init_params('Base_1_b', self.feat_dim, 3))
self.b_conv1_act = paddle.nn.ReLU()
self.b_conv2 = paddle.nn.Conv1D(
in_channels=self.hidden_dim_1d,
out_channels=self.hidden_dim_1d,
kernel_size=3,
padding=1,
groups=4,
weight_attr=init_params('Base_2_w', self.hidden_dim_1d, 3),
bias_attr=init_params('Base_2_b', self.hidden_dim_1d, 3))
self.b_conv2_act = paddle.nn.ReLU()
# Temporal Evaluation Module
self.ts_conv1 = paddle.nn.Conv1D(
in_channels=self.hidden_dim_1d,
out_channels=self.hidden_dim_1d,
kernel_size=3,
padding=1,
groups=4,
weight_attr=init_params('TEM_s1_w', self.hidden_dim_1d, 3),
bias_attr=init_params('TEM_s1_b', self.hidden_dim_1d, 3))
self.ts_conv1_act = paddle.nn.ReLU()
self.ts_conv2 = paddle.nn.Conv1D(
in_channels=self.hidden_dim_1d,
out_channels=1,
kernel_size=1,
padding=0,
groups=1,
weight_attr=init_params('TEM_s2_w', self.hidden_dim_1d, 1),
bias_attr=init_params('TEM_s2_b', self.hidden_dim_1d, 1))
self.ts_conv2_act = paddle.nn.Sigmoid()
self.te_conv1 = paddle.nn.Conv1D(
in_channels=self.hidden_dim_1d,
out_channels=self.hidden_dim_1d,
kernel_size=3,
padding=1,
groups=4,
weight_attr=init_params('TEM_e1_w', self.hidden_dim_1d, 3),
bias_attr=init_params('TEM_e1_b', self.hidden_dim_1d, 3))
self.te_conv1_act = paddle.nn.ReLU()
self.te_conv2 = paddle.nn.Conv1D(
in_channels=self.hidden_dim_1d,
out_channels=1,
kernel_size=1,
padding=0,
groups=1,
weight_attr=init_params('TEM_e2_w', self.hidden_dim_1d, 1),
bias_attr=init_params('TEM_e2_b', self.hidden_dim_1d, 1))
self.te_conv2_act = paddle.nn.Sigmoid()
#Proposal Evaluation Module
self.p_conv1 = paddle.nn.Conv1D(
in_channels=self.hidden_dim_1d,
out_channels=self.hidden_dim_2d,
kernel_size=3,
padding=1,
groups=1,
weight_attr=init_params('PEM_1d_w', self.hidden_dim_1d, 3),
bias_attr=init_params('PEM_1d_b', self.hidden_dim_1d, 3))
self.p_conv1_act = paddle.nn.ReLU()
# init to speed up
sample_mask = get_interp1d_mask(self.tscale, self.dscale,
self.prop_boundary_ratio,
self.num_sample, self.num_sample_perbin)
self.sample_mask = paddle.to_tensor(sample_mask)
self.sample_mask.stop_gradient = True
self.p_conv3d1 = paddle.nn.Conv3D(
in_channels=128,
out_channels=self.hidden_dim_3d,
kernel_size=(self.num_sample, 1, 1),
stride=(self.num_sample, 1, 1),
padding=0,
weight_attr=ParamAttr(name="PEM_3d1_w"),
bias_attr=ParamAttr(name="PEM_3d1_b"))
self.p_conv3d1_act = paddle.nn.ReLU()
self.p_conv2d1 = paddle.nn.Conv2D(
in_channels=512,
out_channels=self.hidden_dim_2d,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name="PEM_2d1_w"),
bias_attr=ParamAttr(name="PEM_2d1_b"))
self.p_conv2d1_act = paddle.nn.ReLU()
self.p_conv2d2 = paddle.nn.Conv2D(
in_channels=128,
out_channels=self.hidden_dim_2d,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name="PEM_2d2_w"),
bias_attr=ParamAttr(name="PEM_2d2_b"))
self.p_conv2d2_act = paddle.nn.ReLU()
self.p_conv2d3 = paddle.nn.Conv2D(
in_channels=128,
out_channels=self.hidden_dim_2d,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name="PEM_2d3_w"),
bias_attr=ParamAttr(name="PEM_2d3_b"))
self.p_conv2d3_act = paddle.nn.ReLU()
self.p_conv2d4 = paddle.nn.Conv2D(
in_channels=128,
out_channels=2,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name="PEM_2d4_w"),
bias_attr=ParamAttr(name="PEM_2d4_b"))
self.p_conv2d4_act = paddle.nn.Sigmoid()
def init_weights(self):
pass
def forward(self, x):
#Base Module
x = self.b_conv1(x)
x = self.b_conv1_act(x)
x = self.b_conv2(x)
x = self.b_conv2_act(x)
#TEM
xs = self.ts_conv1(x)
xs = self.ts_conv1_act(xs)
xs = self.ts_conv2(xs)
xs = self.ts_conv2_act(xs)
xs = paddle.squeeze(xs, axis=[1])
xe = self.te_conv1(x)
xe = self.te_conv1_act(xe)
xe = self.te_conv2(xe)
xe = self.te_conv2_act(xe)
xe = paddle.squeeze(xe, axis=[1])
#PEM
xp = self.p_conv1(x)
xp = self.p_conv1_act(xp)
#BM layer
xp = paddle.matmul(xp, self.sample_mask)
xp = paddle.reshape(xp, shape=[0, 0, -1, self.dscale, self.tscale])
xp = self.p_conv3d1(xp)
xp = self.p_conv3d1_act(xp)
xp = paddle.squeeze(xp, axis=[2])
xp = self.p_conv2d1(xp)
xp = self.p_conv2d1_act(xp)
xp = self.p_conv2d2(xp)
xp = self.p_conv2d2_act(xp)
xp = self.p_conv2d3(xp)
xp = self.p_conv2d3_act(xp)
xp = self.p_conv2d4(xp)
xp = self.p_conv2d4_act(xp)
return xp, xs, xe