|
| 1 | +# 2444. Count Subarrays With Fixed Bounds |
| 2 | + |
| 3 | +- Difficulty: Hard. |
| 4 | +- Related Topics: Array, Queue, Sliding Window, Monotonic Queue. |
| 5 | +- Similar Questions: Count Number of Nice Subarrays, Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit. |
| 6 | + |
| 7 | +## Problem |
| 8 | + |
| 9 | +You are given an integer array `nums` and two integers `minK` and `maxK`. |
| 10 | + |
| 11 | +A **fixed-bound subarray** of `nums` is a subarray that satisfies the following conditions: |
| 12 | + |
| 13 | + |
| 14 | + |
| 15 | +- The **minimum** value in the subarray is equal to `minK`. |
| 16 | + |
| 17 | +- The **maximum** value in the subarray is equal to `maxK`. |
| 18 | + |
| 19 | + |
| 20 | +Return **the **number** of fixed-bound subarrays**. |
| 21 | + |
| 22 | +A **subarray** is a **contiguous** part of an array. |
| 23 | + |
| 24 | + |
| 25 | +Example 1: |
| 26 | + |
| 27 | +``` |
| 28 | +Input: nums = [1,3,5,2,7,5], minK = 1, maxK = 5 |
| 29 | +Output: 2 |
| 30 | +Explanation: The fixed-bound subarrays are [1,3,5] and [1,3,5,2]. |
| 31 | +``` |
| 32 | + |
| 33 | +Example 2: |
| 34 | + |
| 35 | +``` |
| 36 | +Input: nums = [1,1,1,1], minK = 1, maxK = 1 |
| 37 | +Output: 10 |
| 38 | +Explanation: Every subarray of nums is a fixed-bound subarray. There are 10 possible subarrays. |
| 39 | +``` |
| 40 | + |
| 41 | + |
| 42 | +**Constraints:** |
| 43 | + |
| 44 | + |
| 45 | + |
| 46 | +- `2 <= nums.length <= 105` |
| 47 | + |
| 48 | +- `1 <= nums[i], minK, maxK <= 106` |
| 49 | + |
| 50 | + |
| 51 | + |
| 52 | +## Solution |
| 53 | + |
| 54 | +```javascript |
| 55 | +/** |
| 56 | + * @param {number[]} nums |
| 57 | + * @param {number} minK |
| 58 | + * @param {number} maxK |
| 59 | + * @return {number} |
| 60 | + */ |
| 61 | +var countSubarrays = function(nums, minK, maxK) { |
| 62 | + var maxNum = 0; |
| 63 | + var minNum = 0; |
| 64 | + var left = 0; |
| 65 | + var res = 0; |
| 66 | + var start = 0; |
| 67 | + for (var right = 0; right < nums.length; right++) { |
| 68 | + if (nums[right] > maxK || nums[right] < minK) { |
| 69 | + maxNum = 0; |
| 70 | + minNum = 0; |
| 71 | + left = right + 1; |
| 72 | + start = right + 1; |
| 73 | + continue; |
| 74 | + } |
| 75 | + if (nums[right] === minK) minNum += 1; |
| 76 | + if (nums[right] === maxK) maxNum += 1; |
| 77 | + while (left < right && ( |
| 78 | + (nums[left] !== minK && nums[left] !== maxK) || |
| 79 | + (nums[left] === minK && minNum > 1) || |
| 80 | + (nums[left] === maxK && maxNum > 1) |
| 81 | + )) { |
| 82 | + if (nums[left] === minK) minNum -= 1; |
| 83 | + if (nums[left] === maxK) maxNum -= 1; |
| 84 | + left += 1; |
| 85 | + } |
| 86 | + if (minNum >= 1 && maxNum >= 1) { |
| 87 | + res += left - start + 1; |
| 88 | + } |
| 89 | + } |
| 90 | + return res; |
| 91 | +}; |
| 92 | +``` |
| 93 | + |
| 94 | +**Explain:** |
| 95 | + |
| 96 | +Sliding window. |
| 97 | + |
| 98 | +**Complexity:** |
| 99 | + |
| 100 | +* Time complexity : O(n). |
| 101 | +* Space complexity : O(1). |
0 commit comments