|
| 1 | +# Translation |
| 2 | + |
| 3 | +We write ⟦`e`⟧Ξ to denote the translation of Simphony expression `e` using environment Ξ from A. |
| 4 | + |
| 5 | +The translation produces a Simplicity expression with source type A. |
| 6 | + |
| 7 | +The target type depends on the Simphony expression `e`. |
| 8 | + |
| 9 | +## Unit literal |
| 10 | + |
| 11 | +⟦`()`⟧Ξ = unit: A → 𝟙 |
| 12 | + |
| 13 | +## Product constructor |
| 14 | + |
| 15 | +If Ctx(Ξ) ⊩ `b`: B |
| 16 | + |
| 17 | +If Ctx(Ξ) ⊩ `c`: C |
| 18 | + |
| 19 | +Then ⟦`(b, c)`⟧Ξ = pair ⟦`b`⟧Ξ ⟦`c`⟧Ξ: A → B × C |
| 20 | + |
| 21 | +## Left constructor |
| 22 | + |
| 23 | +If Ctx(Ξ) ⊩ `b`: B |
| 24 | + |
| 25 | +Then ⟦`Left(b)`⟧Ξ = injl ⟦`b`⟧Ξ: A → B + C |
| 26 | + |
| 27 | +For any C |
| 28 | + |
| 29 | +## Right constructor |
| 30 | + |
| 31 | +If Ctx(Ξ) ⊩ `c`: C |
| 32 | + |
| 33 | +Then ⟦`Right(c)`⟧Ξ = injr ⟦`c`⟧Ξ: A → B + C |
| 34 | + |
| 35 | +For any B |
| 36 | + |
| 37 | +## Bit string literal |
| 38 | + |
| 39 | +If `s` is a bit string of 2^n bits |
| 40 | + |
| 41 | +Then ⟦`0bs`⟧Ξ = const 0bs: A → 𝟚^(2^n) |
| 42 | + |
| 43 | +## Byte string literal |
| 44 | + |
| 45 | +If `s` is a hex string of 2^n digits |
| 46 | + |
| 47 | +Then ⟦`0xs`⟧Ξ = const 0xs: A → 𝟚^(4 * 2^n) |
| 48 | + |
| 49 | +## Variable |
| 50 | + |
| 51 | +If Ctx(Ξ)(`v`) = B |
| 52 | + |
| 53 | +Then ⟦`v`⟧Ξ = Ξ(`v`): A → B |
| 54 | + |
| 55 | +## Witness value |
| 56 | + |
| 57 | +Ctx(Ξ) ⊩ `witness(name)`: B |
| 58 | + |
| 59 | +Then ⟦`witness(name)`⟧Ξ = witness: A → B |
| 60 | + |
| 61 | +## Jet |
| 62 | + |
| 63 | +If `j` is the name of a jet of type B → C |
| 64 | + |
| 65 | +If Ctx(Ξ) ⊩ `b`: B |
| 66 | + |
| 67 | +Then ⟦`jet_j b`⟧Ξ = comp ⟦`b`⟧Ξ jet_j: A → C |
| 68 | + |
| 69 | +## Chaining |
| 70 | + |
| 71 | +If Ctx(Ξ) ⊩ `b`: 𝟙 |
| 72 | + |
| 73 | +If Ctx(Ξ) ⊩ `c`: C |
| 74 | + |
| 75 | +Then ⟦`b; c`⟧Ξ = comp (pair ⟦`b`⟧Ξ ⟦`c`⟧Ξ) (drop iden): A → C |
| 76 | + |
| 77 | +## Let statement |
| 78 | + |
| 79 | +If Ctx(Ξ) ⊩ `b`: B |
| 80 | + |
| 81 | +If Product(PEnv(B, `p`), Ξ) ⊩ c: C |
| 82 | + |
| 83 | +Then ⟦`let p: B = b; c`⟧Ξ = comp (pair ⟦`b`⟧Ξ iden) ⟦`c`⟧Product(PEnv(B, `p`), Ξ): A → C |
| 84 | + |
| 85 | +## Match statement |
| 86 | + |
| 87 | +If Ctx(Ξ) ⊩ `a`: B + C |
| 88 | + |
| 89 | +If Product(PEnv(B, `x`), Ξ) ⊩ `b`: D |
| 90 | + |
| 91 | +If Product(PEnv(C, `y`), Ξ) ⊩ `c`: D |
| 92 | + |
| 93 | +Then ⟦`match a { Left(x) => a, Right(y) => b, }`⟧Ξ = comp (pair ⟦a⟧Ξ iden) (case ⟦b⟧Product(PEnv(B, `x`), Ξ) ⟦c⟧Product(PEnv(C, `y`), Ξ)): A → D |
| 94 | + |
| 95 | +## Left unwrap |
| 96 | + |
| 97 | +If Ctx(Ξ) ⊩ `b`: B + C |
| 98 | + |
| 99 | +Then ⟦`b.unwrap_left()`⟧Ξ = comp (pair ⟦`b`⟧Ξ unit) (assertl iden #{fail 0}): A → B |
| 100 | + |
| 101 | +## Right unwrap |
| 102 | + |
| 103 | +If Ctx(Ξ) ⊩ `c`: B + C |
| 104 | + |
| 105 | +Then ⟦`c.unwrap_right()`⟧Ξ = comp (pair ⟦`c`⟧Ξ unit) (assertr #{fail 0} iden): A → C |
0 commit comments