|
1 | | -Warning: I don't know but I can try |
2 | | - |
3 | | -<ul> |
4 | | - <li> Let S be the set of all possible permutations <br/> |
5 | | - $ |S| = 20! $ |
6 | | - <li> Let's determine $A$ <br/> |
7 | | - We could pick 1 and any of the 19 larger integers and the other 18 numbers have 18! posible permutations <br/> |
8 | | - We could pick 2 and any of the 18 larger integers and the other 18 numbers have 18! posible permutations <br/> |
9 | | - \ldots <br/> |
10 | | - We could pick 19 and 20 and the other 18 numbers have 18! posible permutations <br/> |
11 | | - $ |A| = 19 \cdot 18! + 18 \cdot 18! + \ldots + 1 \cdot 18! $ <br/> |
12 | | - $ |A| = 18! \cdot \frac{(19)(20)}{2}$ <br/> |
13 | | - $ |A| = 18! \cdot (19)(10) $ <br/> |
14 | | - $ |A| = 18! \cdot 190 $ |
15 | | - $ |A| = 10 \cdot 19! $ |
16 | | - $ \Pr(A) = \frac{|A|}{|S|} $ <br/> |
17 | | - $ \Pr(A) = \frac{10 \cdot 19!}{20!} $ <br/> |
18 | | - $ \Pr(A) = \frac{10}{20} $ <br/> |
19 | | - $ \Pr(A) = \frac{1}{2} $ |
20 | | - <li> Let's determine $\Pr(B)$ <br/> |
21 | | - We could pick 1 and any of the 19 larger integers and the other 18 numbers have 18! posible permutations <br/> |
22 | | - We could pick 2 and any of the 18 larger integers and the other 18 numbers have 18! posible permutations <br/> |
23 | | - \ldots <br/> |
24 | | - We could pick 19 and 20 and the other 18 numbers have 18! posible permutations <br/> |
25 | | - $ |A| = 19 \cdot 18! + 18 \cdot 18! + \ldots + 1 \cdot 18! $ <br/> |
26 | | - $ |A| = 18! \cdot \frac{(19)(20)}{2}$ <br/> |
27 | | - $ |A| = 18! \cdot (19)(10) $ <br/> |
28 | | - $ |A| = 18! \cdot 190 $ |
29 | | - $ |A| = 10 \cdot 19! $ |
30 | | - $ \Pr(A) = \frac{|A|}{|S|} $ <br/> |
31 | | - $ \Pr(A) = \frac{10 \cdot 19!}{20!} $ <br/> |
32 | | - $ \Pr(A) = \frac{10}{20} $ <br/> |
33 | | - $ \Pr(A) = \frac{1}{2} $ |
34 | | - <li> Let's determine $\Pr(A \cap B)$ <br/> |
35 | | - Well, let's go I guess! |
36 | | - <ul> |
37 | | - <li> $\pi_{12}$ could be 1 and $\pi_{11}$ would have to be any of the 19 values smaller than it and $\pi_{10}$ would have to be any value larger than $\pi_{11}$. The remaining 17 values have 17! permutations |
38 | | - <li> $\pi_{12}$ could be 2 and $\pi_{11}$ would have to be any of the 18 values smaller than it and $\pi_{10}$ would have to be any value larger than $\pi_{11}$. The remaining 17 values have 17! permutations |
39 | | - <li> \ldots |
40 | | - <li> $\pi_{12}$ could be 19 and $\pi_{11}$ would have to be 20 and $\pi_{10}$ would have to be any value larger than $\pi_{11}$. The remaining 17 values have 17! permutations |
41 | | - </ul> |
42 | | - Idk if there's a way to express it but we can try <br/> |
43 | | - $ \sum_{i=1}^{18} ( \sum_{j=i+1}^{19} (\sum_{k=j+1}^{20} 1 \cdot 17!) ) $<br/> |
44 | | - $ 17! \cdot \sum_{i=1}^{18} ( \sum_{j=i+1}^{19} (\sum_{k=j+1}^{20} 1) ) $<br/> |
45 | | - $ 17! \cdot \sum_{i=1}^{20} ( \sum_{j=1}^{i-1} (\sum_{k=1}^{j-1} 1) ) $<br/> |
46 | | - $ 17! \cdot \sum_{i=1}^{20} ( \sum_{j=1}^{i-1} ( j - 1 ) ) $<br/> |
47 | | - $ 17! \cdot \sum_{i=1}^{20} ( \frac{(i-1)(i-2)}{2}) $<br/> |
48 | | - $ 17! \cdot \frac{1}{2} \cdot \sum_{i=1}^{20} ( (i-1)(i-2) ) $<br/> |
49 | | - $ 17! \cdot \frac{1}{2} \cdot \sum_{i=1}^{20} ( i^2 - 3i + 2 ) $<br/> |
50 | | - $ 17! \cdot \frac{1}{2} \cdot ( \sum_{i=1}^{20} i^2 - \sum_{i=1}^{20} 3i + \sum_{i=1}^{20} 2 ) $<br/> |
51 | | - $ 17! \cdot \frac{1}{2} \cdot ( \frac{20 \cdot 21 \cdot 41}{6} - 3 \sum_{i=1}^{20} i + 2 \sum_{i=1}^{20} 1 ) $<br/> |
52 | | - $ 17! \cdot \frac{1}{2} \cdot ( \frac{20 \cdot 21 \cdot 41}{6} - 3 \cdot \frac{20 \cdot 21}{2} + 2 \cdot 20 ) $<br/> |
53 | | - $ 17! \cdot \frac{1}{2} \cdot ( \frac{20 \cdot 7 \cdot 41}{2} - 3 \cdot \frac{10 \cdot 21}{1} + 40 ) $<br/> |
54 | | - $ 17! \cdot \frac{1}{2} \cdot ( \frac{10 \cdot 7 \cdot 41}{1} - 3 \cdot 10 \cdot 21 + 40 ) $<br/> |
55 | | - $ 17! \cdot \frac{1}{2} \cdot ( 10 \cdot 7 \cdot 41 - 3 \cdot 10 \cdot 21 + 40 ) $<br/> |
56 | | - $ 17! \cdot ( 5 \cdot 7 \cdot 41 - 3 \cdot 5 \cdot 21 + 20 ) $<br/> |
57 | | - $ 17! \cdot ( 5 \cdot 7 \cdot 41 - 3 \cdot 5 \cdot 21 + 20 ) $<br/> |
58 | | - $ 17! \cdot ( 1435 - 315 + 420 ) $<br/> |
59 | | - $ 17! \cdot ( 1540 ) $<br/> |
60 | | - ngl, the value is actually wrong. Basically the probability of A intersect B is smaller than the product of the 2 probabilities |
61 | | -</ul> |
62 | | - |
63 | | -There's no way this is the actual way to do the question, right? This is bullshit. I am LITERALLY losing my sanity |
| 1 | +Here the thing is easy but tricky: |
| 2 | + |
| 3 | +For simplicity lets take a1 a2 and a3 are our permutations of set {1,2,3} |
| 4 | + |
| 5 | +so Pr(A=a1>a2) = 1/2 because swapping the values of the variables a1 and a2 will make the sign turn to > and violating the constraints. so we can swap in 2! ways and for all ways the signs will change except 1 way. ie : a1 > a2. |
| 6 | + |
| 7 | +under same logic we can say for Pr(B=a2>a3) = 1/2. |
| 8 | + |
| 9 | +Similarly for Pr(A intersect B ) = 1/3! = 1/6. because under only 1 condition a1>a2>a3 and swapping there values will lead to something else compared to the condition we want. |
| 10 | + |
| 11 | +so we can see Pr(A intersect B) < Pr(A) * Pr(B) |
| 12 | + |
| 13 | +what for the big numbers now ? like n = 100 or 200 instead of 3? |
| 14 | + |
| 15 | +actually n doesnt put an affect here because permutation is something know as a unform distributions. |
| 16 | + |
| 17 | +So irrespective of the value of n for a subset of k it will always be 1/k! as the probability to get a specific sign sequence. |
0 commit comments