Skip to content

Latest commit

 

History

History
 
 

senta

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Senta 情感分析

本示例展示如何使用PaddleHub Senta预训练模型进行预测。

Senta是百度NLP开放的中文情感分析模型,可以用于进行中文句子的情感分析,输出结果为{正向/中性/负向}中的一个,关于模型更多信息参见Senta, 本示例代码选择的是Senta-BiLSTM模型。

命令行方式预测

$ hub run senta_bilstm --input_text "这家餐厅很好吃"
$ hub run senta_bilstm --input_file test.txt

test.txt 存放待预测文本, 如:

这家餐厅很好吃
这部电影真的很差劲

通过python API预测

senta_demo.py给出了使用python API调用Module预测的示例代码, 通过以下命令试验下效果。

python senta_demo.py

通过PaddleHub Fine-tune API微调

senta_finetune.py 给出了如何使用Senta模型的句子特征进行Fine-tuning的实例代码。 可以运行以下命令在ChnSentiCorp数据集上进行Fine-tuning。

$ sh run_finetune.sh

其中脚本参数说明如下:

--batch_size: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;
--checkpoint_dir: 模型保存路径,PaddleHub会自动保存验证集上表现最好的模型;
--num_epoch: Fine-tune迭代的轮数;
--use_gpu: 是否使用GPU进行训练,如果机器支持GPU且安装了GPU版本的PaddlePaddle,我们建议您打开这个开关;

使用PaddleHub Fine-tune API进行Fine-tune可以分为4个步骤:

Step1: 加载预训练模型

module = hub.Module(name="senta_bilstm")
inputs, outputs, program = module.context(trainable=True)

PaddleHub提供Senta一列模型可供选择, 模型对应的加载示例如下:

模型名 PaddleHub Module
senta_bilstm hub.Module(name='senta_bilstm')
senta_bow hub.Module(name='senta_bow')
senta_gru hub.Module(name='senta_gru')
senta_lstm hub.Module(name='senta_lstm')
senta_cnn hub.Module(name='senta_cnn')

更多模型请参考PaddleHub官网

如果想尝GRU模型,只需要更换Module中的name参数即可。

# 更换name参数即可无缝切换GRU模型, 代码示例如下
module = hub.Module(name="senta_gru")

Step2: 准备数据集并使用LACClassifyReader读取数据

dataset = hub.dataset.ChnSentiCorp()
reader = hub.reader.LACClassifyReader(
    dataset=dataset,
    vocab_path=module.get_vocab_path())

hub.dataset.ChnSentiCorp() 会自动从网络下载数据集并解压到用户目录下$HOME/.paddlehub/dataset目录;

module.get_vocab_path() 会返回预训练模型对应的词表;

LACClassifyReader中的data_generator会自动按照模型对应词表对数据进行切词,以迭代器的方式返回Senta所需要的word id;

更多数据集信息参考Dataset

自定义数据集

如果想加载自定义数据集完成迁移学习,详细参见自定义数据集

Step3:选择优化策略和运行配置

strategy = hub.AdamWeightDecayStrategy(
    learning_rate=1e-5,
    weight_decay=0.01,
    warmup_proportion=0.1,
    lr_scheduler="linear_decay",
)

config = hub.RunConfig(use_cuda=True, num_epoch=3, batch_size=32, strategy=strategy)

优化策略

PaddleHub提供了许多优化策略,如AdamWeightDecayStrategyULMFiTStrategyDefaultFinetuneStrategy等,详细信息参见策略

其中AdamWeightDecayStrategy

  • learning_rate: Fine-tune过程中的最大学习率;
  • weight_decay: 模型的正则项参数,默认0.01,如果模型有过拟合倾向,可适当调高这一参数;
  • warmup_proportion: 如果warmup_proportion>0, 例如0.1, 则学习率会在前10%的steps中线性增长至最高值learning_rate;
  • lr_scheduler: 有两种策略可选(1) linear_decay策略学习率会在最高点后以线性方式衰减; noam_decay策略学习率会在最高点以多项式形式衰减;

运行配置

RunConfig 主要控制Fine-tune的训练,包含以下可控制的参数:

  • use_cuda: 是否使用GPU训练,默认为False;
  • checkpoint_dir: 模型checkpoint保存路径, 若用户没有指定,程序会自动生成;
  • num_epoch: Fine-tune的轮数;
  • batch_size: 训练的批大小,如果使用GPU,请根据实际情况调整batch_size;
  • strategy: Fine-tune优化策略;

Step4: 构建网络并创建分类迁移任务进行Fine-tune

sent_feature = outputs["sentence_feature"]

feed_list = [inputs["words"].name]

cls_task = hub.TextClassifierTask(
    data_reader=reader,
    feature=sent_feature,
    feed_list=feed_list,
    num_classes=dataset.num_labels,
    config=config)

cls_task.finetune_and_eval()

NOTE:

  1. outputs["sentence_feature"]返回了senta模型对应的句子特征,可以用于句子的特征表达;
  2. feed_list中的inputs参数指名了senta中的输入tensor的顺序,与LACClassifyReader返回的结果一致;
  3. hub.TextClassifierTask通过输入特征,label与迁移的类别数,可以生成适用于文本分类的迁移任务TextClassifierTask

可视化

Fine-tune API训练过程中会自动对关键训练指标进行打点,启动程序后执行下面命令

$ tensorboard --logdir $CKPT_DIR/visualization --host ${HOST_IP} --port ${PORT_NUM}

其中${HOST_IP}为本机IP地址,${PORT_NUM}为可用端口号,如本机IP地址为192.168.0.1,端口号8040,用浏览器打开192.168.0.1:8040,即可看到训练过程中指标的变化情况。

模型预测

通过Fine-tune完成模型训练后,在对应的ckpt目录下,会自动保存验证集上效果最好的模型。 配置脚本参数

CKPT_DIR="ckpt_chnsentiment/"
python predict.py --checkpoint_dir $CKPT_DIR

其中CKPT_DIR为Fine-tune API保存最佳模型的路径

参数配置正确后,请执行脚本sh run_predict.sh,即可看到以下文本分类预测结果, 以及最终准确率。 如需了解更多预测步骤,请参考predict.py

我们在AI Studio上提供了IPython NoteBook形式的demo,您可以直接在平台上在线体验,链接如下:

预训练模型 任务类型 数据集 AIStudio链接 备注
ResNet 图像分类 猫狗数据集DogCat 点击体验
ERNIE 文本分类 中文情感分类数据集ChnSentiCorp 点击体验
ERNIE 文本分类 中文新闻分类数据集THUNEWS 点击体验 本教程讲述了如何将自定义数据集加载,并利用Fine-tune API完成文本分类迁移学习。
ERNIE 序列标注 中文序列标注数据集MSRA_NER 点击体验
ERNIE 序列标注 中文快递单数据集Express 点击体验 本教程讲述了如何将自定义数据集加载,并利用Fine-tune API完成序列标注迁移学习。
ERNIE Tiny 文本分类 中文情感分类数据集ChnSentiCorp 点击体验
Senta 文本分类 中文情感分类数据集ChnSentiCorp 点击体验 本教程讲述了任何利用Senta和Fine-tune API完成情感分类迁移学习。
Senta 情感分析预测 N/A 点击体验
LAC 词法分析 N/A 点击体验
Ultra-Light-Fast-Generic-Face-Detector-1MB 人脸检测 N/A 点击体验

超参优化AutoDL Finetuner

PaddleHub还提供了超参优化(Hyperparameter Tuning)功能, 自动搜索最优模型超参得到更好的模型效果。详细信息参见AutoDL Finetuner超参优化功能教程