forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensim.py
81 lines (67 loc) · 2.62 KB
/
sensim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""similarity between two sentences"""
import numpy as np
import scipy
from scipy.spatial import distance
from paddlehub.reader.tokenization import load_vocab
import paddle.fluid as fluid
import paddlehub as hub
def convert_tokens_to_ids(vocab, text):
wids = []
tokens = text.split(" ")
for token in tokens:
wid = vocab.get(token, None)
if not wid:
wid = vocab["unknown"]
wids.append(wid)
return wids
if __name__ == "__main__":
module = hub.Module(name="word2vec_skipgram")
inputs, outputs, program = module.context(trainable=False)
vocab = load_vocab(module.get_vocab_path())
word_ids = inputs["word_ids"]
embedding = outputs["word_embs"]
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[word_ids], place=place)
data = [
[
"驾驶 违章 一次 扣 12分 用 两个 驾驶证 处理 可以 吗",
" 一次性 扣 12分 的 违章 , 能用 不满 十二分 的 驾驶证 扣分 吗"
],
["水果 放 冰箱 里 储存 好 吗", "中国银行 纪念币 网上 怎么 预约"],
["电脑 反应 很 慢 怎么 办", "反应 速度 慢 , 电脑 总是 卡 是 怎么回事"],
]
for item in data:
text_a = convert_tokens_to_ids(vocab, item[0])
text_b = convert_tokens_to_ids(vocab, item[1])
vecs_a, = exe.run(
program,
feed=feeder.feed([[text_a]]),
fetch_list=[embedding.name],
return_numpy=False)
vecs_a = np.array(vecs_a)
vecs_b, = exe.run(
program,
feed=feeder.feed([[text_b]]),
fetch_list=[embedding.name],
return_numpy=False)
vecs_b = np.array(vecs_b)
sent_emb_a = np.sum(vecs_a, axis=0)
sent_emb_b = np.sum(vecs_b, axis=0)
cos_sim = 1 - distance.cosine(sent_emb_a, sent_emb_b)
print("text_a: %s; text_b: %s; cosine_similarity: %.5f" %
(item[0], item[1], cos_sim))