@@ -174,12 +174,13 @@ def run(
174174 fn_accumulated += fns .get (cui , 0 )
175175 tp_accumulated += tps .get (cui , 0 )
176176 cc_accumulated += cc .get (cui , 0 )
177+ cui_info = model .cdb .cui2info .get (cui )
177178 aggregated_metrics .append ({
178179 "per_concept_fp" : fps .get (cui , 0 ),
179180 "per_concept_fn" : fns .get (cui , 0 ),
180181 "per_concept_tp" : tps .get (cui , 0 ),
181182 "per_concept_counts" : cc .get (cui , 0 ),
182- "per_concept_count_train" : cast ( Dict [ str , Any ], model . cdb . cui2info . get (cui , {})). get ( "count_train" , 0 ),
183+ "per_concept_count_train" : cui_info . get ("count_train" , 0 ) if cui_info is not None else 0 ,
183184 "per_concept_acc_fp" : fp_accumulated ,
184185 "per_concept_acc_fn" : fn_accumulated ,
185186 "per_concept_acc_tp" : tp_accumulated ,
@@ -309,8 +310,9 @@ def _save_trained_concepts(
309310 annotation_ignorance_count = []
310311 concepts = list (training_concepts .keys ())
311312 for c in concepts :
312- train_count .append (model .cdb .cui2info .get (c , {}).get ("count_train" , 0 )) # type: ignore
313- concept_names .append (model .cdb .cui2info .get (c , {}).get ("preferred_name" , "" )) # type: ignore
313+ cui_info = model .cdb .cui2info .get (c )
314+ train_count .append (cui_info .get ("count_train" , 0 ) if cui_info is not None else 0 )
315+ concept_names .append (model .cdb .get_name (c ))
314316 annotation_count .append (training_concepts [c ])
315317 annotation_unique_count .append (training_unique_concepts [c ])
316318 annotation_ignorance_count .append (training_ignorance_counts [c ])
@@ -421,7 +423,7 @@ def run(
421423 logger .info ("Performing unsupervised training..." )
422424 step = 0
423425 self ._tracker_client .send_model_stats (dict (model .cdb .get_basic_info ()), step )
424- before_cui2count_train = { c : info [ "count_train" ] for c , info in model .cdb .cui2info . items ()}
426+ before_cui2count_train = model .cdb .get_cui2count_train ()
425427 num_of_docs = 0
426428 train_unsupervised_params = get_func_params_as_dict (model .trainer .train_unsupervised )
427429 train_unsupervised_params = {p_key : training_params [p_key ] if p_key in training_params else p_val for p_key , p_val in train_unsupervised_params .items ()}
@@ -437,13 +439,14 @@ def run(
437439
438440 self ._tracker_client .log_document_size (num_of_docs )
439441 after_cui2count_train = {
440- c : info [ "count_train" ]
441- for c , info in sorted (
442- model .cdb .cui2info .items (),
443- key = lambda item : item [1 ][ "count_train" ] ,
442+ c : ct
443+ for c , ct in sorted (
444+ model .cdb .get_cui2count_train () .items (),
445+ key = lambda item : item [1 ],
444446 reverse = True ,
445447 )
446448 }
449+
447450 aggregated_metrics = []
448451 cui_step = 0
449452 for cui , train_count in after_cui2count_train .items ():
0 commit comments