@@ -81,10 +81,10 @@ func NewPairing(api frontend.API) (*Pairing, error) {
81
81
}, nil
82
82
}
83
83
84
- // Pair calculates the reduced pairing for a set of points
85
- // ∏ᵢ e(Pᵢ, Qᵢ).
84
+ // Pair calculates the reduced pairing for a set of points ∏ᵢ e(Pᵢ, Qᵢ).
86
85
//
87
- // This function doesn't check that the inputs are in the correct subgroups. See AssertIsOnG1 and AssertIsOnG2.
86
+ // This function checks that the Qᵢ are in the correct subgroup, but does not
87
+ // check Pᵢ. See AssertIsOnG1.
88
88
func (pr Pairing ) Pair (P []* G1Affine , Q []* G2Affine ) (* GTEl , error ) {
89
89
res , err := pr .MillerLoop (P , Q )
90
90
if err != nil {
@@ -206,10 +206,13 @@ func (pr Pairing) AssertFinalExponentiationIsOne(a *GTEl) {
206
206
pr .AssertIsEqual (t0 , t2 )
207
207
}
208
208
209
- // PairingCheck calculates the reduced pairing for a set of points and asserts if the result is One
210
- // ∏ᵢ e(Pᵢ, Qᵢ) =? 1
209
+ // PairingCheck calculates the reduced pairing for a set of points and asserts
210
+ // if the result is one:
211
211
//
212
- // This function doesn't check that the inputs are in the correct subgroups. See AssertIsOnG1 and AssertIsOnG2.
212
+ // ∏ᵢ e(Pᵢ, Qᵢ) =? 1
213
+ //
214
+ // This function checks that the Qᵢ are in the correct subgroup, but does not
215
+ // check Pᵢ. See AssertIsOnG1.
213
216
func (pr Pairing ) PairingCheck (P []* G1Affine , Q []* G2Affine ) error {
214
217
f , err := pr .MillerLoop (P , Q )
215
218
if err != nil {
@@ -266,6 +269,7 @@ func (pr Pairing) AssertIsOnG1(P *G1Affine) {
266
269
pr .AssertIsOnCurve (P )
267
270
}
268
271
272
+ // computeG2ShortVector computes ψ³([2x₀]Q) - ψ²([x₀]Q) - ψ([x₀]Q) - [x₀]Q
269
273
func (pr Pairing ) computeG2ShortVector (Q * G2Affine ) (_Q * G2Affine ) {
270
274
// [x₀]Q
271
275
xQ := pr .g2 .scalarMulBySeed (Q )
@@ -278,7 +282,7 @@ func (pr Pairing) computeG2ShortVector(Q *G2Affine) (_Q *G2Affine) {
278
282
psi3xxQ = pr .g2 .psi (psi3xxQ )
279
283
280
284
// _Q = ψ³([2x₀]Q) - ψ²([x₀]Q) - ψ([x₀]Q) - [x₀]Q
281
- _Q = pr .g2 .sub (psi2xQ , psi3xxQ )
285
+ _Q = pr .g2 .sub (psi3xxQ , psi2xQ )
282
286
_Q = pr .g2 .sub (_Q , psixQ )
283
287
_Q = pr .g2 .sub (_Q , xQ )
284
288
return _Q
@@ -289,8 +293,10 @@ func (pr Pairing) AssertIsOnG2(Q *G2Affine) {
289
293
pr .AssertIsOnTwist (Q )
290
294
291
295
// 2- Check Q has the right subgroup order
296
+ // [r]Q == 0 <==> ψ³([2x₀]Q) - ψ²([x₀]Q) - ψ([x₀]Q) - [x₀]Q == Q
297
+ // This is a valid short vector since x₀ ≠ 5422 mod 2196.
298
+ // See Sec. 3.1.2 (Example 1) in https://eprint.iacr.org/2022/348.
292
299
_Q := pr .computeG2ShortVector (Q )
293
- // [r]Q == 0 <==> _Q == Q
294
300
pr .g2 .AssertIsEqual (Q , _Q )
295
301
}
296
302
0 commit comments