Skip to content

Commit 9d6bda0

Browse files
committed
add start history and Separated the course outline into its own file (docs/schedule.md)
1 parent cdcdcc3 commit 9d6bda0

File tree

3 files changed

+68
-41
lines changed

3 files changed

+68
-41
lines changed

README-en.md

+12-20
Original file line numberDiff line numberDiff line change
@@ -112,27 +112,9 @@ $ nohup jupyter lab --port=8000 --NotebookApp.token='replace_with_your_password'
112112
Jupyter Lab's output log will be saved in the `nohup.out` file (which is already filtered in the `.gitignore` file).
113113

114114

115-
## Schedule
116-
117-
| Lesson | Description | Course Materials | Events |
118-
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
119-
| Lesson 1 | Fundamentals of Large Models: Evolution of Theory and Technology <br/> - An Initial Exploration of Large Models: Origin and Development <br/> - Warm-up: Decoding Attention Mechanism <br/> - Milestone of Transformation: The Rise of Transformer <br/> - Taking Different Paths: The Choices of GPT and Bert | Suggested Readings:<br/>- [Attention Mechanism: Neural Machine Translation by Jointly Learning to Align and Translate](https://arxiv.org/abs/1409.0473)<br/>- [An Attentive Survey of Attention Models](https://arxiv.org/abs/1904.02874)<br/>- [Transformer: Attention is All you Need](https://arxiv.org/abs/1706.03762)<br/>- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) | [[Homework](docs/homework_01.md)] |
120-
| Lesson 2 | The GPT Model Family: From Start to Present <br/> - From GPT-1 to GPT-3.5: The Evolution <br/> - ChatGPT: Where It Wins <br/> - GPT-4: A New Beginning <br/>Prompt Learning <br/> - Chain-of-Thought (CoT): The Pioneering Work <br/> - Self-Consistency: Multi-path Reasoning <br/> - Tree-of-Thoughts (ToT): Continuing the Story | Suggested Readings:<br/>- [GPT-1: Improving Language Understanding by Generative Pre-training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)<br/>- [GPT-2: Language Models are Unsupervised Multitask Learners](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)<br/>- [GPT-3: Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)<br/><br/><br/>Additional Readings:<br/>- [GPT-4: Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE](https://www.semianalysis.com/p/gpt-4-architecture-infrastructure)<br/>- [GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models](https://arxiv.org/abs/2303.10130)<br/>- [Sparks of Artificial General Intelligence: Early experiments with GPT-4](https://arxiv.org/abs/2303.12712)<br/><br/> | [[Homework](docs/homework_02.md)] |
121-
| Lesson 3 | Fundamentals of Large Model Development: OpenAI Embedding <br/> - The Eve of General Artificial Intelligence <br/> - "Three Worlds" and "Turing Test" <br/> - Computer Data Representation <br/> - Representation Learning and Embedding <br/> Embeddings Dev 101 <br/> - Course Project: GitHub openai-quickstart <br/> - Getting Started with OpenAI Embeddings | Suggested Readings:<br/>- [Representation Learning: A Review and New Perspectives](https://arxiv.org/abs/1206.5538)<br/>- [Word2Vec: Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/abs/1301.3781)<br/>- [GloVe: Global Vectors for Word Representation](https://nlp.stanford.edu/pubs/glove.pdf)<br/><br/>Additional Readings:<br/><br/>- [Improving Distributional Similarity with Lessons Learned from Word Embeddings](http://www.aclweb.org/anthology/Q15-1016)<br/>- [Evaluation methods for unsupervised word embeddings](http://www.aclweb.org/anthology/D15-1036) | [[Homework](docs/homework_03.md)]<br/>Code:<br/>[[embedding](openai_api/embedding.ipynb)] |
122-
| Lesson 4 | OpenAI Large Model Development and Application Practice <br/> - OpenAI Large Model Development Guide <br/> - Overview of OpenAI Language Models <br/> - OpenAI GPT-4, GPT-3.5, GPT-3, Moderation <br/> - OpenAI Token Billing and Calculation <br/>OpenAI API Introduction and Practice <br/> - OpenAI Models API <br/> - OpenAI Completions API <br/> - OpenAI Chat Completions API <br/> - Completions vs Chat Completions <br/>OpenAI Large Model Application Practice <br/> - Initial Exploration of Text Completion <br/> - Initial Exploration of Chatbots | Suggested Readings:<br/><br/>- [OpenAI Models](https://platform.openai.com/docs/models)<br/>- [OpenAI Completions API](https://platform.openai.com/docs/guides/gpt/completions-api)<br/>- [OpenAI Chat Completions API](https://platform.openai.com/docs/guides/gpt/chat-completions-api) | Code:<br/>[[models](openai_api/models.ipynb)] <br/>[[tiktoken](openai_api/count_tokens_with_tiktoken.ipynb)] |
123-
| Lesson 5 | Best Practices for Applying Large AI Models <br/> - How to Improve the Efficiency and Quality of GPT Model Use <br/> - Best Practices for Applying Large AI Models <br/> - Text Creation and Generation<br/> - Article Abstract and Summary <br/> - Novel Generation and Content Supervision <br/> - Executing Complex Tasks Step by Step <br/> - Evaluating the Quality of Model Output <br/> - Constructing Training Annotation Data <br/> - Code Debugging Assistant <br/> - New Features: Function Calling Introduction and Practical Application | Suggested Readings <br/> - [GPT Best Practices](https://platform.openai.com/docs/guides/gpt-best-practices) <br/> - [Function Calling](https://platform.openai.com/docs/guides/gpt/function-calling) | Code: <br/> [Function Calling](openai_api/function_call.ipynb) |
124-
| Lesson 6 | Practical: OpenAI-Translator <br/> - Market demand analysis for OpenAI-Translator <br/> - Product definition and feature planning for OpenAI-Translator <br/> - Technical solutions and architecture design for OpenAI-Translator <br/> - OpenAI module design <br/> - OpenAI-Translator practical application <br/> | | Code: <br/> [pdfplumber](openai-translator/jupyter/pdfplumber.ipynb) |
125-
| Lesson 7 | ChatGPT Plugin Development Guide <br/> - Introduction to ChatGPT Plugin <br/> - Sample project: Todo management plugin <br/> - Deployment and testing of practical examples <br/> - ChatGPT developer mode <br/> - Practical: Weather Forecast plugin development <br/> - Weather Forecast Plugin design and definition <br/> - Weather Forecast function service <br/> - Integration with third-party weather query platform <br/> - Practical Weather Forecast Plugin | | Code: <br/> [[todo list](chatgpt-plugins/todo-list)] <br/> [[weather forecast](chatgpt-plugins/weather-forecast)] |
126-
| Lesson 8 | LLM Application Development Framework LangChain (Part 1) <br/> - LangChain 101 <br/> - What is LangChain <br/> - Why LangChain is Needed <br/> - Typical Use Cases of LangChain <br/> - Basic Concepts and Modular Design of LangChain <br/> - Introduction and Practice of LangChain Core Modules <br/> - Standardized Large-Scale Model Abstraction: Mode I/O <br/> - Template Input: Prompts <br/> - Language Model: Models <br/> - Standardized Output: Output Parsers | | Code: <br/> [[model io](langchain/jupyter/model_io)] |
127-
| Lesson 9 | LLM Application Development Framework LangChain (Part 2) <br/> - Best Practices for LLM Chains <br/> - Getting Started with Your First Chain: LLM Chain <br/> - Sequential Chain: A Chained Call with Sequential Arrangement <br/> - Transform Chain: A Chain for Processing Long Texts <br/> - Router Chain: A Chain for Implementing Conditional Judgments <br/> - Memory: Endowing Applications with Memory Capabilities <br/> - The Relationship between Memory System and Chain <br/> - BaseMemory and BaseChatMessageMemory: Memory Base Classes <br/> - Memory System for Service Chatting <br/> - ConversationBufferMemory <br/> - ConversationBufferWindowMemory <br/> - ConversationSummaryBufferMemory | | Code: <br/> [[chains](langchain/jupyter/chains)] <br/> [[memory](langchain/jupyter/memory)] |
128-
| Lesson 10 | LLM Application Development Framework LangChain (Part 3) <br/> - Native data processing flow of the framework: Data Connection <br/> - Document Loaders <br/> - Document Transformers <br/> - Text Embedding Models <br/> - Vector Stores <br/> - Retrievers <br/> - Agent Systems for Building Complex Applications: Agents <br/> - Theoretical Foundation of Agents: ReAct <br/> - LLM Reasoning Capabilities: CoT, ToT <br/> - LLM Operation Capabilities: WebGPT, SayCan <br/> - LangChain Agents Module Design and Principle Analysis <br/> - Module: Agent, Tools, Toolkits <br/> - Runtime: AgentExecutor, PlanAndExecute, AutoGPT <br/> - Getting Started with Your First Agent: Google Search + LLM <br/> - Practice with ReAct: SerpAPI + LLM-MATH | | Code: <br/> [[data connection](langchain/jupyter/data_connection)] <br/> [[agents](langchain/jupyter/agents)] |
129-
| Lesson 11 | Practical: LangChain version OpenAI-Translator v2.0 <br/> - In-depth understanding of Chat Model and Chat Prompt Template <br/> - Review: LangChain Chat Model usage and process <br/> - Design translation prompt templates using Chat Prompt Template <br/> - Implement bilingual translation using Chat Model <br/> - Simplify Chat Prompt construction using LLMChain <br/> - Optimize OpenAI-Translator architecture design based on LangChain <br/> - Hand over large model management to LangChain framework <br/> - Focus on application-specific Prompt design <br/> - Implement translation interface using TranslationChain <br/> - More concise and unified configuration management <br/> - Development of OpenAI-Translator v2.0 feature <br/> - Design and implementation of graphical interface based on Gradio <br/> - Design and implementation of Web Server based on Flask | | Code: <br/> [[openai-translator](langchain/openai-translator)] |
130-
| Lesson 12 | Practical: LangChain version Auto-GPT <br/> - Auto-GPT project positioning and value interpretation <br/> - Introduction to Auto-GPT open source project <br/> - Auto-GPT positioning: an independent GPT-4 experiment <br/> - Auto-GPT value: an attempt at AGI based on Agent <br/> - LangChain version Auto-GPT technical solution and architecture design <br/> - In-depth understanding of LangChain Agents <br/> - LangChain Experimental module <br/> - Auto-GPT autonomous agent design <br/> - Auto-GPT Prompt design <br/> - Auto-GPT Memory design <br/> - In-depth understanding of LangChain VectorStore <br/> - Auto-GPT OutputParser design <br/> - Practical LangChain version Auto-GPT | | Code: <br/> [[autogpt](langchain/jupyter/autogpt)] |
131-
| Lesson 13 | Sales-Consultant business process and value analysis <br/> - Technical solution and architecture design of Sales-Consultant <br/> - Use GPT-4 to generate sales pitches <br/> - Store sales Q&A pitches in FAISS vector database <br/> - Retrieve sales pitches data using RetrievalQA <br/> - Implement chatbot graphical interface using Gradio <br/> - Practical LangChain version Sales-Consultant | | Code: <br/> [[sales_chatbot](langchain/sales_chatbot)] |
132-
| Lesson 14 | Era of large models: Open source and data protocols <br/> - What is open source? <br/> - Widely used open source and data protocols <br/> - Is Llama pseudo-open source? <br/> - Open source protocol of ChatGLM2-6B <br/> Interpretability of large language models <br/> - Enhancing transparency in model decision-making <br/> - Related research of Stanford Alpaca <br/> Regulatory compliance of large language model applications <br/> - Mainland China: Registration of generative AI services <br/> - International: Data privacy and protection (taking GDPR as an example) <br/> - Key points of corporate compliance | | |
133-
| Lesson 15 | Github in the era of large models: Hugging Face <br/> - What is Hugging Face? <br/> - Hugging Face Transformers library <br/> - Hugging Face open community: Models, Datasets, Spaces, Docs <br/> - Comparative analysis of large models <br/> - Open LLM Leaderboard (Large Model Ladder) <br/> Graphics card selection guide <br/> - GPU vs Graphics card <br/> - GPU Core vs AMD CU <br/> - CUDA Core vs Tensor Core <br/> - Evolution of Nvidia architectures <br/> - Graphics card performance ladder | | |
134-
| Lesson 16 | Tsinghua GLM large model family <br/> - Strongest base model GLM-130B <br/> - Enhanced dialogue capability ChatGLM <br/> - Open source chat model ChatGLM2-6B <br/> - Internet search capability WebGLM <br/> - Initial exploration of multimodal VisualGLM-6B <br/> - Code generation model CodeGeex2 <br/> Application development of ChatGLM2-6B large model <br/> - Private deployment of ChatGLM2-6B <br/> - HF Transformers Tokenizer <br/> - HF Transformers Model <br/> - Synchronize the model to Hugging Face <br/> - Empower ChatGLM2-6B graphical interface using Gradio <br/> - Fine-tuning of ChatGLM2-6B model <br/> - Practical assignment: Implement graphical interface of openai-translator based on ChatGLM2-6B | | |
115+
## Course Schedule
135116

117+
For the complete documentation, please refer to the [Quick Start Guide for Large Language Models (LLMs) Application Development - Course Outline](docs/schedule.md#schedule)
136118

137119

138120
## Contributing
@@ -150,3 +132,13 @@ This project is licensed under the terms of the Apache-2.0 License . See the [LI
150132
Django Peng - [email protected]
151133

152134
Project Link: https://github.com/DjangoPeng/openai-quickstart
135+
136+
## Star History
137+
138+
<a href="https://star-history.com/#DjangoPeng/openai-quickstart&Date">
139+
<picture>
140+
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=DjangoPeng/openai-quickstart&type=Date&theme=dark" />
141+
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=DjangoPeng/openai-quickstart&type=Date" />
142+
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=DjangoPeng/openai-quickstart&type=Date" />
143+
</picture>
144+
</a>

0 commit comments

Comments
 (0)