-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
159 lines (124 loc) · 5.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import random
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
sys.path.append('%s/s2v_lib' % os.path.dirname(os.path.realpath(__file__)))
from embedding import EmbedMeanField, EmbedLoopyBP
from pytorch_util import to_scalar
from mlp import MLPClassifier
from util import cmd_args, load_data
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
if cmd_args.gm == 'mean_field':
model = EmbedMeanField
elif cmd_args.gm == 'loopy_bp':
model = EmbedLoopyBP
else:
print('unknown gm %s' % cmd_args.gm)
sys.exit()
self.s2v = model(latent_dim=cmd_args.latent_dim,
output_dim=cmd_args.out_dim,
num_node_feats=cmd_args.feat_dim,
num_edge_feats=0,
max_lv=cmd_args.max_lv)
out_dim = cmd_args.out_dim
if out_dim == 0:
out_dim = cmd_args.latent_dim
self.mlp = MLPClassifier(input_size=out_dim, hidden_size=cmd_args.hidden, num_class=cmd_args.num_class)
def PrepareFeatureLabel(self, batch_graph):
labels = torch.LongTensor(len(batch_graph))
n_nodes = 0
concat_feat = []
for i in range(len(batch_graph)):
labels[i] = batch_graph[i].label
n_nodes += batch_graph[i].num_nodes
concat_feat += batch_graph[i].node_tags
concat_feat = torch.LongTensor(concat_feat).view(-1, 1)
node_feat = torch.zeros(n_nodes, cmd_args.feat_dim)
node_feat.scatter_(1, concat_feat, 1)
if cmd_args.mode == 'gpu':
node_feat = node_feat.cuda()
labels = labels.cuda()
return node_feat, labels
def forward(self, batch_graph):
node_feat, labels = self.PrepareFeatureLabel(batch_graph)
embed = self.s2v(batch_graph, node_feat, None)
return self.mlp(embed, labels)
def loop_dataset(g_list, classifier, sample_idxes, optimizer=None, bsize=cmd_args.batch_size):
total_loss = []
total_iters = (len(sample_idxes) + (bsize - 1) * (optimizer is None)) // bsize
pbar = tqdm(range(total_iters), unit='batch')
tp, tn, fp, fn = 0, 0, 0, 0
n_samples = 0
for pos in pbar:
selected_idx = sample_idxes[pos * bsize: (pos + 1) * bsize]
batch_graph = [g_list[idx] for idx in selected_idx]
logits, loss, acc = classifier(batch_graph)
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
else:
pred = logits.data.max(1, keepdim=True)[1]
true = batch_graph[0].label
if true == 1:
if pred == 1:
tp += 1
elif pred == 0:
fp += 1
elif true == 0:
if pred == 0:
tn += 1
elif pred == 1:
fn += 1
loss = to_scalar(loss)
pbar.set_description('loss: %0.5f acc: %0.5f' % (loss, acc))
total_loss.append(np.array([loss, acc]) * len(selected_idx))
n_samples += len(selected_idx)
if optimizer is None:
assert n_samples == len(sample_idxes)
total_loss = np.array(total_loss)
avg_loss = np.sum(total_loss, 0) / n_samples
if optimizer is None:
return avg_loss, [tp, tn, fp, fn]
return avg_loss
if __name__ == '__main__':
random.seed(cmd_args.seed)
np.random.seed(cmd_args.seed)
torch.manual_seed(cmd_args.seed)
train_graphs, test_graphs = load_data()
print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs)))
try:
classifier = Classifier()
classifier.load_state_dict(torch.load("best_model/epoch-best.model"))
classifier.eval()
print("load model success")
except FileNotFoundError:
print('training from scratch')
classifier = Classifier()
if cmd_args.mode == 'gpu':
classifier = classifier.cuda()
optimizer = optim.Adam(classifier.parameters(), lr=cmd_args.learning_rate)
train_idxes = list(range(len(train_graphs)))
best_loss = None
for epoch in range(cmd_args.num_epochs):
random.shuffle(train_idxes)
avg_loss = loop_dataset(train_graphs, classifier, train_idxes, optimizer=optimizer)
print('\033[92maverage training of epoch %d: loss %.5f acc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1]))
test_loss, [tp, tn, fp, fn] = loop_dataset(test_graphs, classifier, list(range(len(test_graphs))))
print('\033[93maverage test of epoch %d: loss %.5f acc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1]))
tp = tp / len(test_graphs)
tn = tn / len(test_graphs)
fp = fp / len(test_graphs)
fn = fn / len(test_graphs)
print(f"tp: {tp}%, tn: {tn}%, fp: {fp}%, fn: {fn}%")
if best_loss is None or test_loss[0] < best_loss:
best_loss = test_loss[0]
print('----saving to best model since this is the best valid loss so far.----')
torch.save(classifier.state_dict(), "best_model" + '/epoch-best.model')
# save_args(cmd_args.save_dir + '/epoch-best-args.pkl', cmd_args)