forked from capnramses/antons_opengl_tutorials_book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaths_funcs.cpp
551 lines (482 loc) · 19.9 KB
/
maths_funcs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/******************************************************************************\
| OpenGL 4 Example Code. |
| Accompanies written series "Anton's OpenGL 4 Tutorials" |
| Email: anton at antongerdelan dot net |
| First version 27 Jan 2014 |
| Dr Anton Gerdelan, Trinity College Dublin, Ireland. |
| See individual libraries' separate legal notices |
|******************************************************************************|
| Commonly-used maths structures and functions |
| Simple-as-possible. No disgusting templates. |
| Structs vec3, mat4, versor. just hold arrays of floats called "v","m","q", |
| respectively. So, for example, to get values from a mat4 do: my_mat.m |
| A versor is the proper name for a unit quaternion. |
\******************************************************************************/
#include "maths_funcs.h"
#include <stdio.h>
#define _USE_MATH_DEFINES
#include <math.h>
/*--------------------------------CONSTRUCTORS--------------------------------*/
vec2::vec2() {}
vec2::vec2( float x, float y ) {
v[0] = x;
v[1] = y;
}
vec3::vec3() {}
vec3::vec3( float x, float y, float z ) {
v[0] = x;
v[1] = y;
v[2] = z;
}
vec3::vec3( const vec2& vv, float z ) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = z;
}
vec3::vec3( const vec4& vv ) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = vv.v[2];
}
vec4::vec4() {}
vec4::vec4( float x, float y, float z, float w ) {
v[0] = x;
v[1] = y;
v[2] = z;
v[3] = w;
}
vec4::vec4( const vec2& vv, float z, float w ) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = z;
v[3] = w;
}
vec4::vec4( const vec3& vv, float w ) {
v[0] = vv.v[0];
v[1] = vv.v[1];
v[2] = vv.v[2];
v[3] = w;
}
mat3::mat3() {}
/* note: entered in COLUMNS */
mat3::mat3( float a, float b, float c, float d, float e, float f, float g, float h, float i ) {
m[0] = a;
m[1] = b;
m[2] = c;
m[3] = d;
m[4] = e;
m[5] = f;
m[6] = g;
m[7] = h;
m[8] = i;
}
mat4::mat4() {}
/* note: entered in COLUMNS */
mat4::mat4( float a, float b, float c, float d, float e, float f, float g, float h, float i, float j, float k, float l, float mm, float n, float o, float p ) {
m[0] = a;
m[1] = b;
m[2] = c;
m[3] = d;
m[4] = e;
m[5] = f;
m[6] = g;
m[7] = h;
m[8] = i;
m[9] = j;
m[10] = k;
m[11] = l;
m[12] = mm;
m[13] = n;
m[14] = o;
m[15] = p;
}
/*-----------------------------PRINT FUNCTIONS--------------------------------*/
void print( const vec2& v ) { printf( "[%.2f, %.2f]\n", v.v[0], v.v[1] ); }
void print( const vec3& v ) { printf( "[%.2f, %.2f, %.2f]\n", v.v[0], v.v[1], v.v[2] ); }
void print( const vec4& v ) { printf( "[%.2f, %.2f, %.2f, %.2f]\n", v.v[0], v.v[1], v.v[2], v.v[3] ); }
void print( const mat3& m ) {
printf( "\n" );
printf( "[%.2f][%.2f][%.2f]\n", m.m[0], m.m[3], m.m[6] );
printf( "[%.2f][%.2f][%.2f]\n", m.m[1], m.m[4], m.m[7] );
printf( "[%.2f][%.2f][%.2f]\n", m.m[2], m.m[5], m.m[8] );
}
void print( const mat4& m ) {
printf( "\n" );
printf( "[%.2f][%.2f][%.2f][%.2f]\n", m.m[0], m.m[4], m.m[8], m.m[12] );
printf( "[%.2f][%.2f][%.2f][%.2f]\n", m.m[1], m.m[5], m.m[9], m.m[13] );
printf( "[%.2f][%.2f][%.2f][%.2f]\n", m.m[2], m.m[6], m.m[10], m.m[14] );
printf( "[%.2f][%.2f][%.2f][%.2f]\n", m.m[3], m.m[7], m.m[11], m.m[15] );
}
/*------------------------------VECTOR FUNCTIONS------------------------------*/
float length( const vec3& v ) { return sqrt( v.v[0] * v.v[0] + v.v[1] * v.v[1] + v.v[2] * v.v[2] ); }
// squared length
float length2( const vec3& v ) { return v.v[0] * v.v[0] + v.v[1] * v.v[1] + v.v[2] * v.v[2]; }
// note: proper spelling (hehe)
vec3 normalise( const vec3& v ) {
vec3 vb;
float l = length( v );
if ( 0.0f == l ) { return vec3( 0.0f, 0.0f, 0.0f ); }
vb.v[0] = v.v[0] / l;
vb.v[1] = v.v[1] / l;
vb.v[2] = v.v[2] / l;
return vb;
}
vec3 vec3::operator+( const vec3& rhs ) {
vec3 vc;
vc.v[0] = v[0] + rhs.v[0];
vc.v[1] = v[1] + rhs.v[1];
vc.v[2] = v[2] + rhs.v[2];
return vc;
}
vec3& vec3::operator+=( const vec3& rhs ) {
v[0] += rhs.v[0];
v[1] += rhs.v[1];
v[2] += rhs.v[2];
return *this; // return self
}
vec3 vec3::operator-( const vec3& rhs ) {
vec3 vc;
vc.v[0] = v[0] - rhs.v[0];
vc.v[1] = v[1] - rhs.v[1];
vc.v[2] = v[2] - rhs.v[2];
return vc;
}
vec3& vec3::operator-=( const vec3& rhs ) {
v[0] -= rhs.v[0];
v[1] -= rhs.v[1];
v[2] -= rhs.v[2];
return *this;
}
vec3 vec3::operator+( float rhs ) {
vec3 vc;
vc.v[0] = v[0] + rhs;
vc.v[1] = v[1] + rhs;
vc.v[2] = v[2] + rhs;
return vc;
}
vec3 vec3::operator-( float rhs ) {
vec3 vc;
vc.v[0] = v[0] - rhs;
vc.v[1] = v[1] - rhs;
vc.v[2] = v[2] - rhs;
return vc;
}
vec3 vec3::operator*( float rhs ) {
vec3 vc;
vc.v[0] = v[0] * rhs;
vc.v[1] = v[1] * rhs;
vc.v[2] = v[2] * rhs;
return vc;
}
vec3 vec3::operator/( float rhs ) {
vec3 vc;
vc.v[0] = v[0] / rhs;
vc.v[1] = v[1] / rhs;
vc.v[2] = v[2] / rhs;
return vc;
}
vec3& vec3::operator*=( float rhs ) {
v[0] = v[0] * rhs;
v[1] = v[1] * rhs;
v[2] = v[2] * rhs;
return *this;
}
vec3& vec3::operator=( const vec3& rhs ) {
v[0] = rhs.v[0];
v[1] = rhs.v[1];
v[2] = rhs.v[2];
return *this;
}
float dot( const vec3& a, const vec3& b ) { return a.v[0] * b.v[0] + a.v[1] * b.v[1] + a.v[2] * b.v[2]; }
vec3 cross( const vec3& a, const vec3& b ) {
float x = a.v[1] * b.v[2] - a.v[2] * b.v[1];
float y = a.v[2] * b.v[0] - a.v[0] * b.v[2];
float z = a.v[0] * b.v[1] - a.v[1] * b.v[0];
return vec3( x, y, z );
}
float get_squared_dist( vec3 from, vec3 to ) {
float x = ( to.v[0] - from.v[0] ) * ( to.v[0] - from.v[0] );
float y = ( to.v[1] - from.v[1] ) * ( to.v[1] - from.v[1] );
float z = ( to.v[2] - from.v[2] ) * ( to.v[2] - from.v[2] );
return x + y + z;
}
/* converts an un-normalised direction into a heading in degrees
NB i suspect that the z is backwards here but i've used in in
several places like this. d'oh! */
float direction_to_heading( vec3 d ) { return atan2( -d.v[0], -d.v[2] ) * ONE_RAD_IN_DEG; }
vec3 heading_to_direction( float degrees ) {
float rad = degrees * ONE_DEG_IN_RAD;
return vec3( -sinf( rad ), 0.0f, -cosf( rad ) );
}
/*-----------------------------MATRIX FUNCTIONS-------------------------------*/
mat3 zero_mat3() { return mat3( 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f ); }
mat3 identity_mat3() { return mat3( 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f ); }
mat4 zero_mat4() { return mat4( 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f ); }
mat4 identity_mat4() { return mat4( 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); }
/* mat4 array layout
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15
*/
vec4 mat4::operator*( const vec4& rhs ) {
// 0x + 4y + 8z + 12w
float x = m[0] * rhs.v[0] + m[4] * rhs.v[1] + m[8] * rhs.v[2] + m[12] * rhs.v[3];
// 1x + 5y + 9z + 13w
float y = m[1] * rhs.v[0] + m[5] * rhs.v[1] + m[9] * rhs.v[2] + m[13] * rhs.v[3];
// 2x + 6y + 10z + 14w
float z = m[2] * rhs.v[0] + m[6] * rhs.v[1] + m[10] * rhs.v[2] + m[14] * rhs.v[3];
// 3x + 7y + 11z + 15w
float w = m[3] * rhs.v[0] + m[7] * rhs.v[1] + m[11] * rhs.v[2] + m[15] * rhs.v[3];
return vec4( x, y, z, w );
}
mat4 mat4::operator*( const mat4& rhs ) {
mat4 r = zero_mat4();
int r_index = 0;
for ( int col = 0; col < 4; col++ ) {
for ( int row = 0; row < 4; row++ ) {
float sum = 0.0f;
for ( int i = 0; i < 4; i++ ) { sum += rhs.m[i + col * 4] * m[row + i * 4]; }
r.m[r_index] = sum;
r_index++;
}
}
return r;
}
mat4& mat4::operator=( const mat4& rhs ) {
for ( int i = 0; i < 16; i++ ) { m[i] = rhs.m[i]; }
return *this;
}
// returns a scalar value with the determinant for a 4x4 matrix
// see
// http://www.euclideanspace.com/maths/algebra/matrix/functions/determinant/fourD/index.htm
float determinant( const mat4& mm ) {
return mm.m[12] * mm.m[9] * mm.m[6] * mm.m[3] - mm.m[8] * mm.m[13] * mm.m[6] * mm.m[3] - mm.m[12] * mm.m[5] * mm.m[10] * mm.m[3] + mm.m[4] * mm.m[13] * mm.m[10] * mm.m[3] +
mm.m[8] * mm.m[5] * mm.m[14] * mm.m[3] - mm.m[4] * mm.m[9] * mm.m[14] * mm.m[3] - mm.m[12] * mm.m[9] * mm.m[2] * mm.m[7] + mm.m[8] * mm.m[13] * mm.m[2] * mm.m[7] +
mm.m[12] * mm.m[1] * mm.m[10] * mm.m[7] - mm.m[0] * mm.m[13] * mm.m[10] * mm.m[7] - mm.m[8] * mm.m[1] * mm.m[14] * mm.m[7] + mm.m[0] * mm.m[9] * mm.m[14] * mm.m[7] +
mm.m[12] * mm.m[5] * mm.m[2] * mm.m[11] - mm.m[4] * mm.m[13] * mm.m[2] * mm.m[11] - mm.m[12] * mm.m[1] * mm.m[6] * mm.m[11] + mm.m[0] * mm.m[13] * mm.m[6] * mm.m[11] +
mm.m[4] * mm.m[1] * mm.m[14] * mm.m[11] - mm.m[0] * mm.m[5] * mm.m[14] * mm.m[11] - mm.m[8] * mm.m[5] * mm.m[2] * mm.m[15] + mm.m[4] * mm.m[9] * mm.m[2] * mm.m[15] +
mm.m[8] * mm.m[1] * mm.m[6] * mm.m[15] - mm.m[0] * mm.m[9] * mm.m[6] * mm.m[15] - mm.m[4] * mm.m[1] * mm.m[10] * mm.m[15] + mm.m[0] * mm.m[5] * mm.m[10] * mm.m[15];
}
/* returns a 16-element array that is the inverse of a 16-element array (4x4
matrix). see
http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
*/
mat4 inverse( const mat4& mm ) {
float det = determinant( mm );
/* there is no inverse if determinant is zero (not likely unless scale is
broken) */
if ( 0.0f == det ) {
fprintf( stderr, "WARNING. matrix has no determinant. can not invert\n" );
return mm;
}
float inv_det = 1.0f / det;
return mat4(
inv_det * ( mm.m[9] * mm.m[14] * mm.m[7] - mm.m[13] * mm.m[10] * mm.m[7] + mm.m[13] * mm.m[6] * mm.m[11] - mm.m[5] * mm.m[14] * mm.m[11] - mm.m[9] * mm.m[6] * mm.m[15] + mm.m[5] * mm.m[10] * mm.m[15] ),
inv_det * ( mm.m[13] * mm.m[10] * mm.m[3] - mm.m[9] * mm.m[14] * mm.m[3] - mm.m[13] * mm.m[2] * mm.m[11] + mm.m[1] * mm.m[14] * mm.m[11] + mm.m[9] * mm.m[2] * mm.m[15] - mm.m[1] * mm.m[10] * mm.m[15] ),
inv_det * ( mm.m[5] * mm.m[14] * mm.m[3] - mm.m[13] * mm.m[6] * mm.m[3] + mm.m[13] * mm.m[2] * mm.m[7] - mm.m[1] * mm.m[14] * mm.m[7] - mm.m[5] * mm.m[2] * mm.m[15] + mm.m[1] * mm.m[6] * mm.m[15] ),
inv_det * ( mm.m[9] * mm.m[6] * mm.m[3] - mm.m[5] * mm.m[10] * mm.m[3] - mm.m[9] * mm.m[2] * mm.m[7] + mm.m[1] * mm.m[10] * mm.m[7] + mm.m[5] * mm.m[2] * mm.m[11] - mm.m[1] * mm.m[6] * mm.m[11] ),
inv_det * ( mm.m[12] * mm.m[10] * mm.m[7] - mm.m[8] * mm.m[14] * mm.m[7] - mm.m[12] * mm.m[6] * mm.m[11] + mm.m[4] * mm.m[14] * mm.m[11] + mm.m[8] * mm.m[6] * mm.m[15] - mm.m[4] * mm.m[10] * mm.m[15] ),
inv_det * ( mm.m[8] * mm.m[14] * mm.m[3] - mm.m[12] * mm.m[10] * mm.m[3] + mm.m[12] * mm.m[2] * mm.m[11] - mm.m[0] * mm.m[14] * mm.m[11] - mm.m[8] * mm.m[2] * mm.m[15] + mm.m[0] * mm.m[10] * mm.m[15] ),
inv_det * ( mm.m[12] * mm.m[6] * mm.m[3] - mm.m[4] * mm.m[14] * mm.m[3] - mm.m[12] * mm.m[2] * mm.m[7] + mm.m[0] * mm.m[14] * mm.m[7] + mm.m[4] * mm.m[2] * mm.m[15] - mm.m[0] * mm.m[6] * mm.m[15] ),
inv_det * ( mm.m[4] * mm.m[10] * mm.m[3] - mm.m[8] * mm.m[6] * mm.m[3] + mm.m[8] * mm.m[2] * mm.m[7] - mm.m[0] * mm.m[10] * mm.m[7] - mm.m[4] * mm.m[2] * mm.m[11] + mm.m[0] * mm.m[6] * mm.m[11] ),
inv_det * ( mm.m[8] * mm.m[13] * mm.m[7] - mm.m[12] * mm.m[9] * mm.m[7] + mm.m[12] * mm.m[5] * mm.m[11] - mm.m[4] * mm.m[13] * mm.m[11] - mm.m[8] * mm.m[5] * mm.m[15] + mm.m[4] * mm.m[9] * mm.m[15] ),
inv_det * ( mm.m[12] * mm.m[9] * mm.m[3] - mm.m[8] * mm.m[13] * mm.m[3] - mm.m[12] * mm.m[1] * mm.m[11] + mm.m[0] * mm.m[13] * mm.m[11] + mm.m[8] * mm.m[1] * mm.m[15] - mm.m[0] * mm.m[9] * mm.m[15] ),
inv_det * ( mm.m[4] * mm.m[13] * mm.m[3] - mm.m[12] * mm.m[5] * mm.m[3] + mm.m[12] * mm.m[1] * mm.m[7] - mm.m[0] * mm.m[13] * mm.m[7] - mm.m[4] * mm.m[1] * mm.m[15] + mm.m[0] * mm.m[5] * mm.m[15] ),
inv_det * ( mm.m[8] * mm.m[5] * mm.m[3] - mm.m[4] * mm.m[9] * mm.m[3] - mm.m[8] * mm.m[1] * mm.m[7] + mm.m[0] * mm.m[9] * mm.m[7] + mm.m[4] * mm.m[1] * mm.m[11] - mm.m[0] * mm.m[5] * mm.m[11] ),
inv_det * ( mm.m[12] * mm.m[9] * mm.m[6] - mm.m[8] * mm.m[13] * mm.m[6] - mm.m[12] * mm.m[5] * mm.m[10] + mm.m[4] * mm.m[13] * mm.m[10] + mm.m[8] * mm.m[5] * mm.m[14] - mm.m[4] * mm.m[9] * mm.m[14] ),
inv_det * ( mm.m[8] * mm.m[13] * mm.m[2] - mm.m[12] * mm.m[9] * mm.m[2] + mm.m[12] * mm.m[1] * mm.m[10] - mm.m[0] * mm.m[13] * mm.m[10] - mm.m[8] * mm.m[1] * mm.m[14] + mm.m[0] * mm.m[9] * mm.m[14] ),
inv_det * ( mm.m[12] * mm.m[5] * mm.m[2] - mm.m[4] * mm.m[13] * mm.m[2] - mm.m[12] * mm.m[1] * mm.m[6] + mm.m[0] * mm.m[13] * mm.m[6] + mm.m[4] * mm.m[1] * mm.m[14] - mm.m[0] * mm.m[5] * mm.m[14] ),
inv_det * ( mm.m[4] * mm.m[9] * mm.m[2] - mm.m[8] * mm.m[5] * mm.m[2] + mm.m[8] * mm.m[1] * mm.m[6] - mm.m[0] * mm.m[9] * mm.m[6] - mm.m[4] * mm.m[1] * mm.m[10] + mm.m[0] * mm.m[5] * mm.m[10] ) );
}
// returns a 16-element array flipped on the main diagonal
mat4 transpose( const mat4& mm ) {
return mat4( mm.m[0], mm.m[4], mm.m[8], mm.m[12], mm.m[1], mm.m[5], mm.m[9], mm.m[13], mm.m[2], mm.m[6], mm.m[10], mm.m[14], mm.m[3], mm.m[7], mm.m[11], mm.m[15] );
}
/*--------------------------AFFINE MATRIX FUNCTIONS---------------------------*/
// translate a 4d matrix with xyz array
mat4 translate( const mat4& m, const vec3& v ) {
mat4 m_t = identity_mat4();
m_t.m[12] = v.v[0];
m_t.m[13] = v.v[1];
m_t.m[14] = v.v[2];
return m_t * m;
}
// rotate around x axis by an angle in degrees
mat4 rotate_x_deg( const mat4& m, float deg ) {
// convert to radians
float rad = deg * ONE_DEG_IN_RAD;
mat4 m_r = identity_mat4();
m_r.m[5] = cos( rad );
m_r.m[9] = -sin( rad );
m_r.m[6] = sin( rad );
m_r.m[10] = cos( rad );
return m_r * m;
}
// rotate around y axis by an angle in degrees
mat4 rotate_y_deg( const mat4& m, float deg ) {
// convert to radians
float rad = deg * ONE_DEG_IN_RAD;
mat4 m_r = identity_mat4();
m_r.m[0] = cos( rad );
m_r.m[8] = sin( rad );
m_r.m[2] = -sin( rad );
m_r.m[10] = cos( rad );
return m_r * m;
}
// rotate around z axis by an angle in degrees
mat4 rotate_z_deg( const mat4& m, float deg ) {
// convert to radians
float rad = deg * ONE_DEG_IN_RAD;
mat4 m_r = identity_mat4();
m_r.m[0] = cos( rad );
m_r.m[4] = -sin( rad );
m_r.m[1] = sin( rad );
m_r.m[5] = cos( rad );
return m_r * m;
}
// scale a matrix by [x, y, z]
mat4 scale( const mat4& m, const vec3& v ) {
mat4 a = identity_mat4();
a.m[0] = v.v[0];
a.m[5] = v.v[1];
a.m[10] = v.v[2];
return a * m;
}
/*-----------------------VIRTUAL CAMERA MATRIX FUNCTIONS----------------------*/
// returns a view matrix using the opengl lookAt style. COLUMN ORDER.
mat4 look_at( const vec3& cam_pos, vec3 targ_pos, const vec3& up ) {
// inverse translation
mat4 p = identity_mat4();
p = translate( p, vec3( -cam_pos.v[0], -cam_pos.v[1], -cam_pos.v[2] ) );
// distance vector
vec3 d = targ_pos - cam_pos;
// forward vector
vec3 f = normalise( d );
// right vector
vec3 r = normalise( cross( f, up ) );
// real up vector
vec3 u = normalise( cross( r, f ) );
mat4 ori = identity_mat4();
ori.m[0] = r.v[0];
ori.m[4] = r.v[1];
ori.m[8] = r.v[2];
ori.m[1] = u.v[0];
ori.m[5] = u.v[1];
ori.m[9] = u.v[2];
ori.m[2] = -f.v[0];
ori.m[6] = -f.v[1];
ori.m[10] = -f.v[2];
return ori * p; // p * ori;
}
// returns a perspective function mimicking the opengl projection style.
mat4 perspective( float fovy, float aspect, float near, float far ) {
float fov_rad = fovy * ONE_DEG_IN_RAD;
float inverse_range = 1.0f / tan( fov_rad / 2.0f );
float sx = inverse_range / aspect;
float sy = inverse_range;
float sz = -( far + near ) / ( far - near );
float pz = -( 2.0f * far * near ) / ( far - near );
mat4 m = zero_mat4(); // make sure bottom-right corner is zero
m.m[0] = sx;
m.m[5] = sy;
m.m[10] = sz;
m.m[14] = pz;
m.m[11] = -1.0f;
return m;
}
/*----------------------------HAMILTON IN DA HOUSE!---------------------------*/
versor::versor() {}
versor versor::operator/( float rhs ) {
versor result;
result.q[0] = q[0] / rhs;
result.q[1] = q[1] / rhs;
result.q[2] = q[2] / rhs;
result.q[3] = q[3] / rhs;
return result;
}
versor versor::operator*( float rhs ) {
versor result;
result.q[0] = q[0] * rhs;
result.q[1] = q[1] * rhs;
result.q[2] = q[2] * rhs;
result.q[3] = q[3] * rhs;
return result;
}
void print( const versor& q ) { printf( "[%.2f ,%.2f, %.2f, %.2f]\n", q.q[0], q.q[1], q.q[2], q.q[3] ); }
versor versor::operator*( const versor& rhs ) {
versor result;
result.q[0] = rhs.q[0] * q[0] - rhs.q[1] * q[1] - rhs.q[2] * q[2] - rhs.q[3] * q[3];
result.q[1] = rhs.q[0] * q[1] + rhs.q[1] * q[0] - rhs.q[2] * q[3] + rhs.q[3] * q[2];
result.q[2] = rhs.q[0] * q[2] + rhs.q[1] * q[3] + rhs.q[2] * q[0] - rhs.q[3] * q[1];
result.q[3] = rhs.q[0] * q[3] - rhs.q[1] * q[2] + rhs.q[2] * q[1] + rhs.q[3] * q[0];
// re-normalise in case of mangling
return normalise( result );
}
versor versor::operator+( const versor& rhs ) {
versor result;
result.q[0] = rhs.q[0] + q[0];
result.q[1] = rhs.q[1] + q[1];
result.q[2] = rhs.q[2] + q[2];
result.q[3] = rhs.q[3] + q[3];
// re-normalise in case of mangling
return normalise( result );
}
versor quat_from_axis_rad( float radians, float x, float y, float z ) {
versor result;
result.q[0] = cos( radians / 2.0 );
result.q[1] = sin( radians / 2.0 ) * x;
result.q[2] = sin( radians / 2.0 ) * y;
result.q[3] = sin( radians / 2.0 ) * z;
return result;
}
versor quat_from_axis_deg( float degrees, float x, float y, float z ) { return quat_from_axis_rad( ONE_DEG_IN_RAD * degrees, x, y, z ); }
mat4 quat_to_mat4( const versor& q ) {
float w = q.q[0];
float x = q.q[1];
float y = q.q[2];
float z = q.q[3];
return mat4( 1.0f - 2.0f * y * y - 2.0f * z * z, 2.0f * x * y + 2.0f * w * z, 2.0f * x * z - 2.0f * w * y, 0.0f, 2.0f * x * y - 2.0f * w * z, 1.0f - 2.0f * x * x - 2.0f * z * z,
2.0f * y * z + 2.0f * w * x, 0.0f, 2.0f * x * z + 2.0f * w * y, 2.0f * y * z - 2.0f * w * x, 1.0f - 2.0f * x * x - 2.0f * y * y, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f );
}
versor normalise( versor& q ) {
// norm(q) = q / magnitude (q)
// magnitude (q) = sqrt (w*w + x*x...)
// only compute sqrt if interior sum != 1.0
float sum = q.q[0] * q.q[0] + q.q[1] * q.q[1] + q.q[2] * q.q[2] + q.q[3] * q.q[3];
// NB: floats have min 6 digits of precision
const float thresh = 0.0001f;
if ( fabs( 1.0f - sum ) < thresh ) { return q; }
float mag = sqrt( sum );
return q / mag;
}
float dot( const versor& q, const versor& r ) { return q.q[0] * r.q[0] + q.q[1] * r.q[1] + q.q[2] * r.q[2] + q.q[3] * r.q[3]; }
versor slerp( versor& q, versor& r, float t ) {
// angle between q0-q1
float cos_half_theta = dot( q, r );
// as found here
// http://stackoverflow.com/questions/2886606/flipping-issue-when-interpolating-rotations-using-quaternions
// if dot product is negative then one quaternion should be negated, to make
// it take the short way around, rather than the long way
// yeah! and furthermore Susan, I had to recalculate the d.p. after this
if ( cos_half_theta < 0.0f ) {
for ( int i = 0; i < 4; i++ ) { q.q[i] *= -1.0f; }
cos_half_theta = dot( q, r );
}
// if qa=qb or qa=-qb then theta = 0 and we can return qa
if ( fabs( cos_half_theta ) >= 1.0f ) { return q; }
// Calculate temporary values
float sin_half_theta = sqrt( 1.0f - cos_half_theta * cos_half_theta );
// if theta = 180 degrees then result is not fully defined
// we could rotate around any axis normal to qa or qb
versor result;
if ( fabs( sin_half_theta ) < 0.001f ) {
for ( int i = 0; i < 4; i++ ) { result.q[i] = ( 1.0f - t ) * q.q[i] + t * r.q[i]; }
return result;
}
float half_theta = acos( cos_half_theta );
float a = sin( ( 1.0f - t ) * half_theta ) / sin_half_theta;
float b = sin( t * half_theta ) / sin_half_theta;
for ( int i = 0; i < 4; i++ ) { result.q[i] = q.q[i] * a + r.q[i] * b; }
return result;
}