-
Notifications
You must be signed in to change notification settings - Fork 949
/
Copy pathdag_bq_gcs2bq.py
88 lines (75 loc) · 3.58 KB
/
dag_bq_gcs2bq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------------
# Load The Dependencies
# --------------------------------------------------------------------------------
import datetime
from airflow import models
from airflow.models.variable import Variable
from airflow.operators import empty
from airflow.providers.google.cloud.transfers.gcs_to_bigquery import \
GCSToBigQueryOperator
# --------------------------------------------------------------------------------
# Set variables - Needed for the DEMO
# --------------------------------------------------------------------------------
BQ_LOCATION = Variable.get("BQ_LOCATION")
CURATED_PRJ = Variable.get("CURATED_PRJ")
CURATED_BQ_DATASET = Variable.get("CURATED_BQ_DATASET")
CURATED_GCS = Variable.get("CURATED_GCS")
LAND_PRJ = Variable.get("LAND_PRJ")
LAND_GCS = Variable.get("LAND_GCS")
PROCESSING_GCS = Variable.get("PROCESSING_GCS")
PROCESSING_SA = Variable.get("PROCESSING_SA")
PROCESSING_PRJ = Variable.get("PROCESSING_PRJ")
PROCESSING_SUBNET = Variable.get("PROCESSING_SUBNET")
PROCESSING_VPC = Variable.get("PROCESSING_VPC")
DP_KMS_KEY = Variable.get("DP_KMS_KEY", "")
DP_REGION = Variable.get("DP_REGION")
DP_ZONE = Variable.get("DP_REGION") + "-b"
# --------------------------------------------------------------------------------
# Set default arguments
# --------------------------------------------------------------------------------
# If you are running Airflow in more than one time zone
# see https://airflow.apache.org/docs/apache-airflow/stable/timezone.html
# for best practices
yesterday = datetime.datetime.now() - datetime.timedelta(days=1)
default_args = {
'owner': 'airflow',
'start_date': yesterday,
'depends_on_past': False,
'email': [''],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': datetime.timedelta(minutes=5),
}
# --------------------------------------------------------------------------------
# Main DAG
# --------------------------------------------------------------------------------
with models.DAG('bq_gcs2bq', default_args=default_args,
schedule_interval=None) as dag:
start = empty.EmptyOperator(task_id='start', trigger_rule='all_success')
end = empty.EmptyOperator(task_id='end', trigger_rule='all_success')
# Bigquery Tables automatically created for demo porpuse.
# Consider a dedicated pipeline or tool for a real life scenario.
customers_import = GCSToBigQueryOperator(
task_id='csv_to_bigquery', bucket=LAND_GCS[5:],
source_objects=['customers.csv'
], destination_project_dataset_table='{}:{}.{}'.format(
CURATED_PRJ, CURATED_BQ_DATASET, 'customers'),
create_disposition='CREATE_IF_NEEDED', write_disposition='WRITE_APPEND',
schema_update_options=['ALLOW_FIELD_RELAXATION', 'ALLOW_FIELD_ADDITION'],
schema_object="customers.json", schema_object_bucket=PROCESSING_GCS[5:],
project_id=PROCESSING_PRJ, impersonation_chain=[PROCESSING_SA])
start >> customers_import >> end