This repository was archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathdc_autoencoder.py
69 lines (55 loc) · 2.08 KB
/
dc_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# AutoEncoder
import tensorflow as tf
from tensorflow.keras import Model, Input
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, ReLU, BatchNormalization
def encoder(inputs, layers):
""" Construct the Encoder
inputs : the input vector
layers : number of filters per layer
"""
x = inputs
# Feature pooling by 1/2H x 1/2W
for n_filters in layers:
x = Conv2D(n_filters, (3, 3), strides=(2, 2), padding='same', use_bias=False, kernel_initializer='he_normal')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
return x
def decoder(x, layers):
""" Construct the Decoder
x : input to decoder
layers : the number of filters per layer (in encoder)
"""
# Feature unpooling by 2H x 2W
for _ in range(len(layers)-1, 0, -1):
n_filters = layers[_]
x = Conv2DTranspose(n_filters, (3, 3), strides=(2, 2), padding='same', use_bias=False, kernel_initializer='he_normal')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
# Last unpooling, restore number of channels
x = Conv2DTranspose(3, (3, 3), strides=(2, 2), padding='same', use_bias=False, kernel_initializer='he_normal')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
return x
# metaparameter: number of filters per layer in encoder
layers = [64, 32, 32]
# The input tensor
inputs = Input(shape=(32, 32, 3))
# The encoder
x = encoder(inputs, layers)
# The decoder
outputs = decoder(x, layers)
# Instantiate the Model
model = Model(inputs, outputs)