This repository was archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathresnet_cifar10_v2_c.py
229 lines (192 loc) · 8.07 KB
/
resnet_cifar10_v2_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ResNet20, 56, 110, 164, 1001 version 2 for CIFAR-10
# Paper: https://arxiv.org/pdf/1603.05027.pdf
import tensorflow as tf
from tensorflow.keras import Model, Input
from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Add, Dense
from tensorflow.keras.layers import AveragePooling2D, Flatten, Dropout, Activation
from tensorflow.keras.regularizers import l2
import sys
sys.path.append('../')
from models_c import Composable
class ResNetCifarV2(Composable):
""" Residual Convolutional Neural Network V2 for CIFAR-10
"""
groups = { 20 : [ { 'n_filters': 16, 'n_blocks': 2},
{ 'n_filters': 64, 'n_blocks': 2},
{ 'n_filters': 128, 'n_blocks': 2}],
56 : [ { 'n_filters': 16, 'n_blocks': 6},
{ 'n_filters': 64, 'n_blocks': 6},
{ 'n_filters': 128, 'n_blocks': 6}],
110: [ { 'n_filters': 16, 'n_blocks': 12},
{ 'n_filters': 64, 'n_blocks': 12},
{ 'n_filters': 128, 'n_blocks': 12}],
164: [ { 'n_filters': 16, 'n_blocks': 18},
{ 'n_filters': 64, 'n_blocks': 18},
{ 'n_filters': 128, 'n_blocks': 18}],
1001:[ { 'n_filters': 16, 'n_blocks': 111},
{ 'n_filters': 64, 'n_blocks': 111},
{ 'n_filters': 128, 'n_blocks': 111}]}
# Initial Hyperparameters
hyperparameters = { 'initializer': 'he_normal',
'regularizer': l2(0.001),
'relu_clip' : None,
'bn_epsilon' : None,
'use_bias' : False
}
def __init__(self, n_layers,
input_shape=(32, 32, 3), n_classes=10, include_top=True,
**hyperparameters):
""" Construct a Residual Convolutional Neural Network V1
n_layers : number of layers
input_shape : input shape
n_classes : number of output classes
include_top : whether to include classifier
regularizer : kernel regularizer
relu_clip : max value for ReLU
initializer : kernel initializer
bn_epsilon : epsilon for batch norm
use_bias : whether to use bias with batchnorm
"""
# Configure the base (super) class
Composable.__init__(self, input_shape, include_top, self.hyperparameters, **hyperparameters)
# depth
if isinstance(n_layers, int):
if n_layers not in [20, 56, 110, 164, 1001]:
raise Exception("ResNet CIFAR: invalid value for n_layers")
groups = list(self.groups[n_layers])
else:
groups = n_layers
# The input tensor
inputs = Input(input_shape)
# The stem convolutional group
x = self.stem(inputs)
# The learner
outputs = self.learner(x, groups=groups)
# The classifier
if include_top:
outputs = self.classifier(outputs, n_classes)
# Instantiate the Model
self._model = Model(inputs, outputs)
def stem(self, inputs):
''' Construct the Stem Convolutional Group
inputs : the input vector
'''
x = self.Conv2D(inputs, 16, (3, 3), strides=(1, 1), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
return x
def learner(self, x, **metaparameters):
""" Construct the Learner
x : input to the learner
groups : filter/blocks per group
"""
groups = metaparameters['groups']
# first group uses strides=1 for first convolution
x = self.group(x, **groups.pop(0), expand=4)
# remaining greoups
for group in groups:
x = self.group(x, **group, expand=2)
return x
def group(self, x, n_filters, n_blocks, expand):
""" Construct a Residual Group
x : input into the group
n_filters : number of filters for the group
n_blocks : number of residual blocks with identity link
expand : multipler for filters out
"""
x = self.projection_block(x, n_filters, expand=expand)
# Identity residual blocks
for _ in range(n_blocks-1):
x = self.identity_block(x, n_filters, expand)
return x
def identity_block(self, x, n_filters, expand):
""" Construct a Bottleneck Residual Block of Convolutions with Identity Shortcut
x : input into the block
n_filters: number of filters
expand :
"""
# Save input vector (feature maps) for the identity link
shortcut = x
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters, (1, 1), strides=(1, 1), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters, (3, 3), strides=(1, 1), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters * expand, (1, 1), strides=(1, 1), padding='same')
# Add the identity link (input) to the output of the residual block
x = Add()([x, shortcut])
return x
def projection_block(self, x, n_filters, expand):
""" Construct a Bottleneck Residual Block of Convolutions with Identity Shortcut
x : input into the block
n_filters: number of filters
expand :
"""
# first group
if expand == 4:
strides = (1, 1)
else:
strides = (2, 2)
# Save input vector (feature maps) for the identity link
shortcut = x
shortcut = self.Conv2D(shortcut, n_filters * expand, (1, 1), strides=strides, padding='same')
x = self.BatchNormalization(x)
if expand != 4:
x = self.ReLU(x)
x = self.Conv2D(x, n_filters, (1, 1), strides=strides, padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters, (3, 3), strides=(1, 1), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters * expand, (1, 1), strides=(1, 1), padding='same')
# Add the identity link (input) to the output of the residual block
x = Add()([x, shortcut])
return x
def classifier(self, x, n_classes):
''' Construct the Classifier
x : input into the classifier
n_classes : number of classes
'''
# Pool the feature maps after the end of all the residual blocks
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = AveragePooling2D(pool_size=8)(x)
# Flatten into 1D vector
x = Flatten()(x)
# Add hidden dropout
self.encoding = x
x = Dropout(0.0)(x)
self.embedding = x
# Final Dense Outputting Layer
outputs = self.Dense(x, n_classes)
self.probabilities = outputs
outputs = Activation('softmax')(outputs)
self.softmax = outputs
return outputs
# Example
# cifar = ResNetCifarV2(20)
def example():
''' Example for constructing/training a ResNet V2 model on CIFAR-10
'''
# Example of constructing a mini-ResNet
resnet = ResNetCifarV2(20, input_shape=(32, 32, 3), n_classes=10)
resnet.model.summary()
resnet.cifar10(decay=('time', 1e-4))
# example()