-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathstreamMultipartContent.js
70 lines (60 loc) · 2.11 KB
/
streamMultipartContent.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START aiplatform_gemini_get_started]
const {VertexAI} = require('@google-cloud/vertexai');
/**
* TODO(developer): Update these variables before running the sample.
*/
async function createStreamMultipartContent(
projectId = 'PROJECT_ID',
location = 'us-central1',
model = 'gemini-1.0-pro-vision',
image = 'gs://generativeai-downloads/images/scones.jpg',
mimeType = 'image/jpeg'
) {
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeVisionModel = vertexAI.getGenerativeModel({
model: model,
});
// For images, the SDK supports both Google Cloud Storage URI and base64 strings
const filePart = {
fileData: {
fileUri: image,
mimeType: mimeType,
},
};
const textPart = {
text: 'what is shown in this image?',
};
const request = {
contents: [{role: 'user', parts: [filePart, textPart]}],
};
console.log('Prompt Text:');
console.log(request.contents[0].parts[1].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream =
await generativeVisionModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
}
// [END aiplatform_gemini_get_started]
createStreamMultipartContent(...process.argv.slice(2)).catch(err => {
console.error(err.message);
process.exitCode = 1;
});