forked from mrathena/python.yolo.apex.autoaim.helper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.emulation.move.py
278 lines (234 loc) · 8.84 KB
/
test.emulation.move.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import ctypes
import multiprocessing
import time
from multiprocessing import Process
from win32gui import GetCursorPos
import pynput
import winsound
end = 'end'
signal = 'signal'
init = {
end: False,
signal: False,
}
def keyboard(data):
def release(key):
if key == pynput.keyboard.Key.end:
# 结束程序
data[end] = True
winsound.Beep(400, 200)
return False
elif key == pynput.keyboard.KeyCode.from_char('f'):
data[signal] = True
with pynput.keyboard.Listener(on_release=release) as k:
k.join()
def consumer(data):
from toolkit import Timer
try:
driver = ctypes.CDLL('logitech.driver.dll')
ok = driver.device_open() == 1
if not ok:
print('初始化失败, 未安装罗技驱动')
except FileNotFoundError:
print('初始化失败, 缺少文件')
def move(x: int, y: int):
if (x == 0) & (y == 0):
return
driver.moveR(x, y, True)
def x1(x: int):
move(x, 0)
def x2(x: int, millis: int): # 在指定毫秒内在水平方向上移动指定像素
if x == 0:
return
absolute = abs(x)
direction = x // absolute # 方向(正负1)
nanos = millis * 1_000_000
cost = nanos // absolute # 每移动一个像素的耗时
flag = time.perf_counter_ns()
for i in range(absolute):
while time.perf_counter_ns() - flag < cost:
pass
move(direction, 0)
flag = time.perf_counter_ns()
def x3(x: int, millis: int): # 在指定毫秒内在水平方向上移动指定像素
if x == 0:
return
begin = time.perf_counter_ns()
absx = abs(x)
direction = x // absx # 方向(正负1)
nanos = millis * 1_000_000 # 毫秒转纳秒
cost = nanos // absx # 每移动一个像素的耗时
flag = time.perf_counter_ns()
for i in range(absx):
while time.perf_counter_ns() - flag < cost:
pass
move(direction, 0)
if i == absx - 1:
return
flag = time.perf_counter_ns()
left = nanos - (flag - begin) # 剩余时间
cost = left // (absx - i - 1) # 新的移动一个像素的耗时
def x4(x: int, millis: int): # 在指定毫秒内在水平方向上移动指定像素
begin = time.perf_counter_ns()
if x == 0:
return
times = 0 # 移动次数, 循环判断条件
absx = abs(x)
direction = x // absx # 方向(值只能是正负1)
nanos = millis * 1_000_000 # 毫秒转纳秒
while True: # do-while
# setup code
times += 1 # 循环次数的取值范围是[1,100], 101时会break
# break condition
if times > absx:
break
# loop body
move(direction, 0) # 移动方式为: 移动-间隔-移动-间隔-移动-间隔-...-间隔-移动-间隔-移动-间隔-移动, 所以间隔比移动次数少一次
if times < absx:
flag = time.perf_counter_ns()
cost = (nanos - (flag - begin)) // (absx - times) # 每移动一个像素的耗时
while time.perf_counter_ns() - flag < cost:
pass
def lowestCommonMultiple(x: int, y: int): # 最小公倍数
m, n = x, y
k = m * n # k存储两数的乘积
if m < n: # 比较两个数的大小,使得m中存储大数,n中存储小数
temp = m
m = n
n = temp
b = m % n # b存储m除以n的余数
while b != 0:
m = n # 原来的小数作为下次运算时的大数
n = b # 将上一次的余数作为下次相除时的小数
b = m % n
result = k // n # 两数乘积除以最大公约数即为它们的最小公倍数
return result
def m(millis: int, horizontal: bool, pixel: int):
if pixel == 0:
return
begin = time.perf_counter_ns()
times = 0 # 移动次数, 循环判断条件
absx = abs(pixel)
direction = pixel // absx # 方向(值只能是正负1)
nanos = millis * 1_000_000 # 毫秒转纳秒
while True: # do-while
# setup code
times += 1 # 循环次数的取值范围是[1,100], 101时会break
# break condition
if times > absx:
break
# loop body
# 移动
if horizontal:
move(direction, 0)
else:
move(0, direction) # 移动方式为: 移动-间隔-移动-间隔-移动-间隔-...-间隔-移动-间隔-移动-间隔-移动, 所以间隔比移动次数少一次
# 间隔
if times < absx:
flag = time.perf_counter_ns()
cost = (nanos - (flag - begin)) // (absx - times) # 每移动一个像素的耗时
while time.perf_counter_ns() - flag < cost:
pass
def m2(millis: int, x: int, y: int): # 在指定毫秒内在水平和垂直方向上移动指定像素
if x == 0 and y == 0:
return
elif x == 0 and y != 0:
m(millis=millis, horizontal=False, pixel=y)
elif x != 0 and y == 0:
m(millis=millis, horizontal=True, pixel=x)
else:
absx = abs(x) # 距离的绝对值
absy = abs(y)
nanos = millis * 1_000_000 # 毫秒转纳秒
dirx = x // absx # direction 方向 (值只能是正负1)
diry = y // absy
multiple = lowestCommonMultiple(absx, absy) # 最小公倍数, 需要将时间分割的段数
divisorx = multiple // absx
divisory = multiple // absy
step = nanos // multiple # 时间跨度步长, 时间每过一个步长, 都需要判断下该时间点是否需要对两个方向做移动
for i in range(multiple):
if i % divisorx == 0:
move(dirx, 0)
if i % divisory == 0:
move(0, diry)
flag = time.perf_counter_ns()
while time.perf_counter_ns() - flag < step:
pass
# 获取坐标
# print(GetCursorPos())
def test2(x):
t = time.perf_counter_ns()
x2(x, 1000)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x2(-x, 100)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x2(x, 10)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x2(-x, 1)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
def test3(x):
t = time.perf_counter_ns()
x3(x, 1000)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x3(-x, 100)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x3(x, 10)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x3(-x, 1)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
def test4(x):
t = time.perf_counter_ns()
x4(x, 1000)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x4(-x, 100)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x4(x, 10)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
time.sleep(1)
t = time.perf_counter_ns()
x4(-x, 1)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
def test5(x):
t = time.perf_counter_ns()
m2(100, x, 0)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
t = time.perf_counter_ns()
m2(100, 0, x)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
t = time.perf_counter_ns()
m2(100, -x, 0)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
t = time.perf_counter_ns()
m2(100, 0, -x)
print(f'{Timer.cost(time.perf_counter_ns() - t)}')
while True:
if data[end]:
break
elif data[signal]:
data[signal] = False
test5(1000)
if __name__ == '__main__':
data = multiprocessing.Manager().dict()
data.update(init)
# 将键鼠监听和压枪放到单独进程中跑
pk = Process(target=keyboard, args=(data,), name='Keyboard')
pc = Process(target=consumer, args=(data,), name='Consumer')
pk.start()
pc.start()
pk.join()