Skip to content

Latest commit

Β 

History

History

06-Matrices

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Β 
Β 

Matrices

  • Diagonal Matrix
  • Lower Triangular Matrix
  • Upper Triangular Matrix
  • Symmetric Matrix
  • Tri diagonal Matrix
  • Band Matrix
  • Toeplitz Matrix
  • Sparse Matrix

Diagonal Matrix

A Matrix m n x n = 5 x 5 is said to be Diagonal Matrix. if all the values of the matrix are 0 except the diagonal elements. $$m[i,j]=0 if(i!=j) $$ m =
| 1 0 0 0 |
| 0 2 0 0 |
| 0 0 3 0 |
| 0 0 0 4 |

  • If we tried to store all the elements of 5 x 5 = 25 values. Let's assume int take 2 bytes. So, we need 50 bytes of data to store this 5 x 5 diagnol matrix.
  • Its also time and space consuming while multiply 0 with 0.
  • Instead we need to store all the non 0 values in a single dimensional array. Which saves time and space.

syntax:

A = 1,2,3,4
m[i,j]
if(i==j)
printf(A[i-1])

code

#include<stdio.h>

struct Matrix{
int A[10];
int n;
};

void set(struct Matrix *m, int i, int j, int x)
{
    if(i==j)
        m->A[i-1]=x;
}

int get(struct Matrix m,int i, int j)
{
    if(i==j)
        return m.A[i-1];
    else 
        return 0;
}

void Display(struct Matrix m)
{
    for(int i=0;i<m.n;i++)
    {
        for(int j=0;j<m.n;j++)
        {
            if(i==j)
                printf("%d ",m.A[i]);
            else
            printf("0 ");
        }
    printf("\n");
    }
}

int main()
{
    struct Matrix m;
    m.n=4;

    set(&m,1,1,1);set(&m,2,2,2);set(&m,3,3,3);set(&m,4,4,4);

    printf("%d ",get(m,1,1));
    Display(m);
    return 0;
}
  • Now we do the same for C++
#include <stdio.h>
#include <stdlib.h>
#include <iostream>

using namespace std;

// Class to represent a diagonal matrix
class Diagonal {
    private:
        int n;      // Size of the matrix (n x n)
        int *A;     // Pointer to dynamically allocated array to store diagonal elements

    public:
        // Default constructor initializing a 2x2 matrix
        Diagonal() {
            n = 2;
            A = new int[2];
        }

        // Parameterized constructor to initialize an n x n matrix
        Diagonal(int n) {
            this->n = n;
            A = new int[n];
        }

        // Member function to set an element at position (i, j)
        void set(int i, int j, int x);

        // Member function to get an element at position (i, j)
        int get(int i, int j);

        // Member function to display the matrix
        void Display();

        // Destructor to free dynamically allocated memory
        ~Diagonal() {
            delete [] A;
        }
};

// Destructor definition outside the class
// Diagonal::~Diagonal() {
//     delete[] A;
// }


// Function to set an element at position (i, j) if it's on the diagonal
void Diagonal::set(int i, int j, int x) {
    if (i == j) {
        A[i - 1] = x; // Adjust for 0-based indexing
    }
}

// Function to get an element at position (i, j)
int Diagonal::get(int i, int j) {
    if (i == j) {
        return A[i - 1]; // Return the diagonal element
    }
    return 0; // Return 0 for non-diagonal elements
}

// Function to display the matrix
void Diagonal::Display() {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (i == j) {
                cout << A[i] << " "; // Print diagonal element
            } else {
                cout << "0 "; // Print 0 for non-diagonal elements
            }
        }
        cout << endl; // New line after each row
    }
}

// Main function to demonstrate the usage of the Diagonal class
int main() {
    Diagonal d(4); // Create a 4x4 diagonal matrix

    // Set diagonal elements
    d.set(1, 1, 1);
    d.set(2, 2, 2);
    d.set(3, 3, 3);
    d.set(4, 4, 4);

    // Get and print the value at position (1, 1)
    printf("%d \n", d.get(1, 1));

    // Display the entire matrix
    d.Display();

    return 0;
}

Lower Triangular Matrix

  • A Matrix m n x n = 5 x 5 is said to be Lower Triangular Matrix. All lower triangle are non-zero and upper are zero $$m[i,j]=0 if(i&lt;=j) $$ $$m[i,j]=non-zero if(i&gt;j) $$
  • non-zero = 1 + 2 + 3 + 4 + 5
  • non-zero = $$n^2$$ - n(n+1)/2

m =
| 1 0 0 0 |
| 5 2 0 0 |
| 6 7 3 0 |
| 8 9 1 4 |

how to insert

  • we use row-Major A = 1 | 5 2 | 6 7 3 | 8 9 1 4 A[i,j] = [ i * ( i - 1 ) / 2 + (j - 1)]
#include <stdio.h>
#include <stdlib.h>

// Structure to represent a lower triangular matrix
struct Matrix {
    int *A;  // Pointer to store non-zero elements of the lower triangular matrix
    int n;   // Dimension of the matrix (n x n)
};

// Function to set an element in the lower triangular matrix
void set(struct Matrix *m, int i, int j, int x) {
    if (i >= j) {
        m->A[i * (i - 1) / 2 + j - 1] = x;
    }
}

// Function to get an element from the lower triangular matrix
int get(struct Matrix m, int i, int j) {
    if (i >= j) {
        return m.A[i * (i - 1) / 2 + j - 1];
    }
    return 0;
}

// Function to display the lower triangular matrix
void Display(struct Matrix m) {
    for (int i = 1; i <= m.n; i++) {
        for (int j = 1; j <= m.n; j++) {
            if (i >= j) {
                printf("%d ", m.A[i * (i - 1) / 2 + j - 1]);
            } else {
                printf("0 ");
            }
        }
        printf("\n");
    }
}

int main() {
    struct Matrix m;
    int i, j, x;

    // Prompt the user to enter the dimension of the matrix
    printf("Enter Dimension: ");
    scanf("%d", &m.n);

    // Allocate memory to store the non-zero elements of the lower triangular matrix
    m.A = (int *)malloc(m.n * (m.n + 1) / 2 * sizeof(int));

    // Prompt the user to enter all the elements of the matrix
    printf("Enter all the elements:\n");
    for (i = 1; i <= m.n; i++) {
        for (j = 1; j <= m.n; j++) {
            scanf("%d", &x);
            set(&m, i, j, x);
        }
    }

    // Display the value at the first position (1,1) and the whole matrix
    printf("\n\n");
    printf("%d\n", get(m, 1, 1));
    Display(m);

    // Free the allocated memory
    free(m.A);

    return 0;
}
  • we use Column-Major A = 1 5 6 8 | 2 7 9 | 3 1 | 4 A[i,j] = [ ( j - 1 ) * n - (( j - 2) * ( j - 1 )) / 2 + i - j ]
#include <stdio.h>
#include <stdlib.h>

// Structure to represent a lower triangular matrix
struct Matrix {
    int *A;  // Pointer to store non-zero elements of the lower triangular matrix
    int n;   // Dimension of the matrix (n x n)
};

// Function to set an element in the lower triangular matrix
void set(struct Matrix *m, int i, int j, int x) {
    if (i >= j) {
        m->A[ m.n*( j - 1 ) + ( j - 2) + ( j - 1 ) / 2  + i - j ] = x;
    }
}

// Function to get an element from the lower triangular matrix
int get(struct Matrix m, int i, int j) {
    if (i >= j) {
        return m.A[ m->n*( j - 1 ) + ( j - 2) + ( j - 1 ) / 2  + i - j ];
    }
    return 0;
}

// Function to display the lower triangular matrix
void Display(struct Matrix m) {
    for (int i = 1; i <= m.n; i++) {
        for (int j = 1; j <= m.n; j++) {
            if (i >= j) {
                printf("%d ", m.A[ m.n*( j - 1 ) + ( j - 2) + ( j - 1 ) / 2  + i - j ]);
            } else {
                printf("0 ");
            }
        }
        printf("\n");
    }
}

int main() {
    struct Matrix m;
    int i, j, x;

    // Prompt the user to enter the dimension of the matrix
    printf("Enter Dimension: ");
    scanf("%d", &m.n);

    // Allocate memory to store the non-zero elements of the lower triangular matrix
    m.A = (int *)malloc(m.n * (m.n + 1) / 2 * sizeof(int));

    // Prompt the user to enter all the elements of the matrix
    printf("Enter all the elements:\n");
    for (i = 1; i <= m.n; i++) {
        for (j = 1; j <= m.n; j++) {
            scanf("%d", &x);
            set(&m, i, j, x);
        }
    }

    // Display the value at the first position (1,1) and the whole matrix
    printf("\n\n");
    printf("%d\n", get(m, 1, 1));
    Display(m);

    // Free the allocated memory
    free(m.A);

    return 0;
}

using C++

#include <iostream>
#include <cstdlib>

using namespace std;

// Class to represent a lower triangular matrix
class Matrix {
private:
    int *A;  // Pointer to store non-zero elements of the lower triangular matrix
    int n;   // Dimension of the matrix (n x n)

public:
    // Constructor to initialize the matrix with a given dimension
    Matrix(int size) {
        n = size;
        A = new int[n * (n + 1) / 2];
    }

    // Destructor to free the allocated memory
    ~Matrix() {
        delete[] A;
    }

    // Function to set an element in the lower triangular matrix
    void set(int i, int j, int x) {
        if (i >= j) {
            A[i * (i - 1) / 2 + j - 1] = x;
        }
    }

    // Function to get an element from the lower triangular matrix
    int get(int i, int j) const {
        if (i >= j) {
            return A[i * (i - 1) / 2 + j - 1];
        }
        return 0;
    }

    // Function to display the lower triangular matrix
    void display() const {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                if (i >= j) {
                    cout << A[i * (i - 1) / 2 + j - 1] << " ";
                } else {
                    cout << "0 ";
                }
            }
            cout << endl;
        }
    }
};

int main() {
    int n, i, j, x;

    // Prompt the user to enter the dimension of the matrix
    cout << "Enter Dimension: ";
    cin >> n;

    // Create a Matrix object
    Matrix m(n);

    // Prompt the user to enter all the elements of the matrix
    cout << "Enter all the elements:" << endl;
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= n; j++) {
            cin >> x;
            m.set(i, j, x);
        }
    }

    // Display the value at the first position (1,1) and the whole matrix
    cout << "\n" << m.get(1, 1) << endl;
    m.display();

    return 0;
}

Upper Triangular Matrix

  • A Matrix m n x n = 5 x 5 is said to be upper Triangular Matrix. All lower triangle are non-zero and upper are zero $$m[i,j]=0 if(i&gt;j) $$ $$m[i,j]=non-zero if(i&lt;=j) $$
  • non-zero = 5 + 4 + 3 + 2 + 1
  • non-zero = $$n^2 - n * ( n + 1 ) / 2$$
  • zero = n * ( n - 1 ) / 2

m =
| 1 5 6 7 |
| 0 2 8 9 |
| 0 0 3 1 |
| 0 0 0 4 |

  • how to insert

  • we use row-Major A = 1 5 6 7 | 2 8 9 | 3 1 | 4 A[i,j] = [ (i-1) * n - (( i - 2) * ( i - 1 )) / 2 + j - i ]

  • we use Column-Major A = 1 | 5 2 | 6 8 3 | 7 9 1 4 A[i,j] = [ j * ( j - 1 ) / 2 + i - 1 ]

Symmetric Matrix

  • A Matrix m n x n = 5 x 5 is said to be Symmetric Matrix. All symmetric are non-zero and upper are zero
  • if we know i,j == j,i. So, we can just store any one and reduce the value. $$m[i,j]=0 if(i&gt;j) $$ $$m[i,j]=non-zero if(i&lt;=j) $$
  • non-zero = 5 + 4 + 3 + 2 + 1
  • non-zero = $$n^2$$ - n * ( n + 1 ) / 2$$
  • zero = n * ( n - 1 ) / 2

m =
| 1 1 1 1 |
| 1 2 2 2 |
| 1 2 3 3 |
| 1 2 3 4 |

  • how to insert

  • we use row-Major A = 1 5 6 7 | 2 8 9 | 3 1 | 4 A[i,j] = [ (i-1) * n - ( i - 2) * ( i - 1 ) / 2 ] + (j - i )

  • we use Column-Major A = 1 | 5 2 | 6 8 3 | 7 9 1 4 A[i,j] = [ j * ( j - 1 ) / 2 + i - 1 ]

Tri diagonal Matrix

m =
| 1 1 0 0 |
| 1 2 2 0 |
| 0 2 3 3 |
| 0 0 3 4 |

main = i - j = 0 index = i-1
lower = i - j = 1 index = n-1+i-1
upper = i - j = -1 index 2n-1+i-1
m[i,j] = non-zero if | i - j | <= 1
m[i,j] = 0 if | i - j | 1
size = 3
n - 2 for size we can't use row & column major as they are not uniform we use diagonals

Square band diagnol

  • there are more than and equal number of bands known as square band matrix

Toeplitz Matrix

  • ALl the element in diagonal are same and there are no non-zero elements

m[i,j] = m[i-1,j-1] elements to store n + n-1 A = 2 3 4 | 1 4 index A[i] [j] case 1: if i<=j index = j-i case 2: if i>j index = n + i - j - 1

m =
| 2 3 4 |
| 1 2 3 |
| 4 1 2 |

Sparse Matrix

formulas and explanation

diagonal Matrix

A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero.

Conditions:

  • Only diagonal elements are non-zero.
  • Non-zero elements are stored in a 1D array of size ( n ).

Formulas:

  • Row-major: ( A[i \cdot (i-1)/2 + (j-1)] )
  • Column-major: ( A[(j-1) \cdot (j-1)/2 + (i-1)] )

lower Triangular Matrix

A lower triangular matrix is a matrix in which all the entries above the main diagonal are zero.

Conditions:

  • Non-zero elements satisfy ( i \geq j ).
  • Non-zero elements are stored in a 1D array of size ( n(n+1)/2 ).

Formulas:

  • Row-major: ( A[i \cdot (i-1)/2 + (j-1)] )
  • Column-major: ( A[(j-1) \cdot (2n-j+2)/2 + (i-j)] )

upper Triangular Matrix

An upper triangular matrix is a matrix in which all the entries below the main diagonal are zero.

Conditions:

  • Non-zero elements satisfy ( i \leq j ).
  • Non-zero elements are stored in a 1D array of size ( n(n+1)/2 ).

Formulas:

  • Row-major: ( A[i \cdot (2n-i+1)/2 + (j-i)] )
  • Column-major: ( A[(j \cdot (j-1)/2) + (i-1)] )

symmetric Matrix

A symmetric matrix is a square matrix that is equal to its transpose.

Conditions:

  • Non-zero elements satisfy $$(A[i] [j] = A[j] [i])$$
  • Non-zero elements are stored in a 1D array of size ( n(n+1)/2 ).

Formulas:

  • Row-major: If ( i \geq j ): ( A[i \cdot (i-1)/2 + (j-1)] ), else: ( A[j \cdot (j-1)/2 + (i-1)] )
  • Column-major: If ( i \geq j ): ( A[(j-1) \cdot (2n-j+2)/2 + (i-j)] ), else: ( A[(i-1) \cdot (2n-i+2)/2 + (j-i)] )

Tri Diagonal Matrix

A tri-diagonal matrix has non-zero elements only on the main diagonal and the diagonals directly above and below it.

Conditions:

  • Non-zero elements satisfy ( |i - j| \leq 1 ).
  • Non-zero elements are stored in a 1D array of size ( 3n - 2 ).

Formulas:

  • Row-major:

    • Main diagonal: ( A[i-1] )
    • Lower diagonal: ( A[n-1 + (i-1)] )
    • Upper diagonal: ( A[2n-1 + (i-2)] )
  • Column-major:

    • Main diagonal: ( A[i-1] )
    • Lower diagonal: ( A[n-1 + (j-1)] )
    • Upper diagonal: ( A[2n-1 + (j-2)] )

Band Matrix

A band matrix has non-zero elements around the main diagonal within a certain bandwidth.

Conditions:

  • Non-zero elements are within bandwidth ( k ).
  • Non-zero elements are stored in a 1D array.

Formulas:

  • Row-major:
    • ( A[i \cdot (2k+1) + (j-i+k)] )
  • Column-major:
    • ( A[j \cdot (2k+1) + (i-j+k)] )

toeplitz Matrix

A Toeplitz matrix has constant diagonals, i.e., each descending diagonal from left to right is constant.

Conditions:

  • Non-zero elements satisfy ( A[i] [j] = A[i-1] [j-1] ).
  • Non-zero elements are stored in a 1D array of size ( 2n - 1 ).

Formulas:

  • Row-major:
    • If ( i \leq j ): ( A[j-i] )
    • If ( i > j ): ( A[n + i-j-1] )
  • Column-major:
    • If ( j \leq i ): ( A[i-j] )
    • If ( j > i ): ( A[n + j-i-1] )

sparse Matrix

A sparse matrix is a matrix in which most of the elements are zero.

Conditions:

  • Sparse matrices can be stored efficiently using various techniques such as compressed row storage, compressed column storage, or a list of tuples.

Formulas:

  • Compressed Row Storage:
    • Row-major:
      • Values array: ( A[\text{value_index}] )
      • Column indices array: ( A[\text{column_index}] )
      • Row pointers array: ( A[\text{row_pointer}] )
  • Compressed Column Storage:
    • Column-major:
      • Values array: ( A[\text{value_index}] )
      • Row indices array: ( A[\text{row_index}] )
      • Column pointers array: ( A[\text{column_pointer}] )

These formulas and conditions provide a guide for storing and accessing elements in various types of matrices efficiently using both row-major and column-major orders.