- Diagonal Matrix
- Lower Triangular Matrix
- Upper Triangular Matrix
- Symmetric Matrix
- Tri diagonal Matrix
- Band Matrix
- Toeplitz Matrix
- Sparse Matrix
A Matrix m
n x n
= 5 x 5
is said to be Diagonal Matrix. if all the values of the matrix are 0
except the diagonal elements.
| 1 0 0 0 |
| 0 2 0 0 |
| 0 0 3 0 |
| 0 0 0 4 |
- If we tried to store all the elements of 5 x 5 = 25 values. Let's assume int take 2 bytes. So, we need 50 bytes of data to store this 5 x 5 diagnol matrix.
- Its also time and space consuming while multiply
0
with0
. - Instead we need to store all the non
0
values in a single dimensional array. Which saves time and space.
syntax:
A = 1,2,3,4
m[i,j]
if(i==j)
printf(A[i-1])
#include<stdio.h>
struct Matrix{
int A[10];
int n;
};
void set(struct Matrix *m, int i, int j, int x)
{
if(i==j)
m->A[i-1]=x;
}
int get(struct Matrix m,int i, int j)
{
if(i==j)
return m.A[i-1];
else
return 0;
}
void Display(struct Matrix m)
{
for(int i=0;i<m.n;i++)
{
for(int j=0;j<m.n;j++)
{
if(i==j)
printf("%d ",m.A[i]);
else
printf("0 ");
}
printf("\n");
}
}
int main()
{
struct Matrix m;
m.n=4;
set(&m,1,1,1);set(&m,2,2,2);set(&m,3,3,3);set(&m,4,4,4);
printf("%d ",get(m,1,1));
Display(m);
return 0;
}
- Now we do the same for C++
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
// Class to represent a diagonal matrix
class Diagonal {
private:
int n; // Size of the matrix (n x n)
int *A; // Pointer to dynamically allocated array to store diagonal elements
public:
// Default constructor initializing a 2x2 matrix
Diagonal() {
n = 2;
A = new int[2];
}
// Parameterized constructor to initialize an n x n matrix
Diagonal(int n) {
this->n = n;
A = new int[n];
}
// Member function to set an element at position (i, j)
void set(int i, int j, int x);
// Member function to get an element at position (i, j)
int get(int i, int j);
// Member function to display the matrix
void Display();
// Destructor to free dynamically allocated memory
~Diagonal() {
delete [] A;
}
};
// Destructor definition outside the class
// Diagonal::~Diagonal() {
// delete[] A;
// }
// Function to set an element at position (i, j) if it's on the diagonal
void Diagonal::set(int i, int j, int x) {
if (i == j) {
A[i - 1] = x; // Adjust for 0-based indexing
}
}
// Function to get an element at position (i, j)
int Diagonal::get(int i, int j) {
if (i == j) {
return A[i - 1]; // Return the diagonal element
}
return 0; // Return 0 for non-diagonal elements
}
// Function to display the matrix
void Diagonal::Display() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
cout << A[i] << " "; // Print diagonal element
} else {
cout << "0 "; // Print 0 for non-diagonal elements
}
}
cout << endl; // New line after each row
}
}
// Main function to demonstrate the usage of the Diagonal class
int main() {
Diagonal d(4); // Create a 4x4 diagonal matrix
// Set diagonal elements
d.set(1, 1, 1);
d.set(2, 2, 2);
d.set(3, 3, 3);
d.set(4, 4, 4);
// Get and print the value at position (1, 1)
printf("%d \n", d.get(1, 1));
// Display the entire matrix
d.Display();
return 0;
}
- A Matrix
m
n x n
=5 x 5
is said to be Lower Triangular Matrix. All lower triangle are non-zero and upper are zero$$m[i,j]=0 if(i<=j) $$ $$m[i,j]=non-zero if(i>j) $$ - non-zero = 1 + 2 + 3 + 4 + 5
- non-zero =
$$n^2$$ - n(n+1)/2
m =
| 1 0 0 0 |
| 5 2 0 0 |
| 6 7 3 0 |
| 8 9 1 4 |
- we use row-Major A = 1 | 5 2 | 6 7 3 | 8 9 1 4 A[i,j] = [ i * ( i - 1 ) / 2 + (j - 1)]
#include <stdio.h>
#include <stdlib.h>
// Structure to represent a lower triangular matrix
struct Matrix {
int *A; // Pointer to store non-zero elements of the lower triangular matrix
int n; // Dimension of the matrix (n x n)
};
// Function to set an element in the lower triangular matrix
void set(struct Matrix *m, int i, int j, int x) {
if (i >= j) {
m->A[i * (i - 1) / 2 + j - 1] = x;
}
}
// Function to get an element from the lower triangular matrix
int get(struct Matrix m, int i, int j) {
if (i >= j) {
return m.A[i * (i - 1) / 2 + j - 1];
}
return 0;
}
// Function to display the lower triangular matrix
void Display(struct Matrix m) {
for (int i = 1; i <= m.n; i++) {
for (int j = 1; j <= m.n; j++) {
if (i >= j) {
printf("%d ", m.A[i * (i - 1) / 2 + j - 1]);
} else {
printf("0 ");
}
}
printf("\n");
}
}
int main() {
struct Matrix m;
int i, j, x;
// Prompt the user to enter the dimension of the matrix
printf("Enter Dimension: ");
scanf("%d", &m.n);
// Allocate memory to store the non-zero elements of the lower triangular matrix
m.A = (int *)malloc(m.n * (m.n + 1) / 2 * sizeof(int));
// Prompt the user to enter all the elements of the matrix
printf("Enter all the elements:\n");
for (i = 1; i <= m.n; i++) {
for (j = 1; j <= m.n; j++) {
scanf("%d", &x);
set(&m, i, j, x);
}
}
// Display the value at the first position (1,1) and the whole matrix
printf("\n\n");
printf("%d\n", get(m, 1, 1));
Display(m);
// Free the allocated memory
free(m.A);
return 0;
}
- we use Column-Major A = 1 5 6 8 | 2 7 9 | 3 1 | 4 A[i,j] = [ ( j - 1 ) * n - (( j - 2) * ( j - 1 )) / 2 + i - j ]
#include <stdio.h>
#include <stdlib.h>
// Structure to represent a lower triangular matrix
struct Matrix {
int *A; // Pointer to store non-zero elements of the lower triangular matrix
int n; // Dimension of the matrix (n x n)
};
// Function to set an element in the lower triangular matrix
void set(struct Matrix *m, int i, int j, int x) {
if (i >= j) {
m->A[ m.n*( j - 1 ) + ( j - 2) + ( j - 1 ) / 2 + i - j ] = x;
}
}
// Function to get an element from the lower triangular matrix
int get(struct Matrix m, int i, int j) {
if (i >= j) {
return m.A[ m->n*( j - 1 ) + ( j - 2) + ( j - 1 ) / 2 + i - j ];
}
return 0;
}
// Function to display the lower triangular matrix
void Display(struct Matrix m) {
for (int i = 1; i <= m.n; i++) {
for (int j = 1; j <= m.n; j++) {
if (i >= j) {
printf("%d ", m.A[ m.n*( j - 1 ) + ( j - 2) + ( j - 1 ) / 2 + i - j ]);
} else {
printf("0 ");
}
}
printf("\n");
}
}
int main() {
struct Matrix m;
int i, j, x;
// Prompt the user to enter the dimension of the matrix
printf("Enter Dimension: ");
scanf("%d", &m.n);
// Allocate memory to store the non-zero elements of the lower triangular matrix
m.A = (int *)malloc(m.n * (m.n + 1) / 2 * sizeof(int));
// Prompt the user to enter all the elements of the matrix
printf("Enter all the elements:\n");
for (i = 1; i <= m.n; i++) {
for (j = 1; j <= m.n; j++) {
scanf("%d", &x);
set(&m, i, j, x);
}
}
// Display the value at the first position (1,1) and the whole matrix
printf("\n\n");
printf("%d\n", get(m, 1, 1));
Display(m);
// Free the allocated memory
free(m.A);
return 0;
}
#include <iostream>
#include <cstdlib>
using namespace std;
// Class to represent a lower triangular matrix
class Matrix {
private:
int *A; // Pointer to store non-zero elements of the lower triangular matrix
int n; // Dimension of the matrix (n x n)
public:
// Constructor to initialize the matrix with a given dimension
Matrix(int size) {
n = size;
A = new int[n * (n + 1) / 2];
}
// Destructor to free the allocated memory
~Matrix() {
delete[] A;
}
// Function to set an element in the lower triangular matrix
void set(int i, int j, int x) {
if (i >= j) {
A[i * (i - 1) / 2 + j - 1] = x;
}
}
// Function to get an element from the lower triangular matrix
int get(int i, int j) const {
if (i >= j) {
return A[i * (i - 1) / 2 + j - 1];
}
return 0;
}
// Function to display the lower triangular matrix
void display() const {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i >= j) {
cout << A[i * (i - 1) / 2 + j - 1] << " ";
} else {
cout << "0 ";
}
}
cout << endl;
}
}
};
int main() {
int n, i, j, x;
// Prompt the user to enter the dimension of the matrix
cout << "Enter Dimension: ";
cin >> n;
// Create a Matrix object
Matrix m(n);
// Prompt the user to enter all the elements of the matrix
cout << "Enter all the elements:" << endl;
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
cin >> x;
m.set(i, j, x);
}
}
// Display the value at the first position (1,1) and the whole matrix
cout << "\n" << m.get(1, 1) << endl;
m.display();
return 0;
}
- A Matrix
m
n x n
=5 x 5
is said to be upper Triangular Matrix. All lower triangle are non-zero and upper are zero$$m[i,j]=0 if(i>j) $$ $$m[i,j]=non-zero if(i<=j) $$ - non-zero = 5 + 4 + 3 + 2 + 1
- non-zero =
$$n^2 - n * ( n + 1 ) / 2$$ - zero = n * ( n - 1 ) / 2
m =
| 1 5 6 7 |
| 0 2 8 9 |
| 0 0 3 1 |
| 0 0 0 4 |
-
how to insert
-
we use row-Major A = 1 5 6 7 | 2 8 9 | 3 1 | 4 A[i,j] = [ (i-1) * n - (( i - 2) * ( i - 1 )) / 2 + j - i ]
-
we use Column-Major A = 1 | 5 2 | 6 8 3 | 7 9 1 4 A[i,j] = [ j * ( j - 1 ) / 2 + i - 1 ]
- A Matrix
m
n x n
=5 x 5
is said to be Symmetric Matrix. All symmetric are non-zero and upper are zero - if we know i,j == j,i. So, we can just store any one and reduce the value.
$$m[i,j]=0 if(i>j) $$ $$m[i,j]=non-zero if(i<=j) $$ - non-zero = 5 + 4 + 3 + 2 + 1
- non-zero =
$$n^2$$ - n * ( n + 1 ) / 2$$ - zero = n * ( n - 1 ) / 2
m =
| 1 1 1 1 |
| 1 2 2 2 |
| 1 2 3 3 |
| 1 2 3 4 |
-
how to insert
-
we use row-Major A = 1 5 6 7 | 2 8 9 | 3 1 | 4 A[i,j] = [ (i-1) * n - ( i - 2) * ( i - 1 ) / 2 ] + (j - i )
-
we use Column-Major A = 1 | 5 2 | 6 8 3 | 7 9 1 4 A[i,j] = [ j * ( j - 1 ) / 2 + i - 1 ]
m =
| 1 1 0 0 |
| 1 2 2 0 |
| 0 2 3 3 |
| 0 0 3 4 |
main = i - j = 0 index = i-1
lower = i - j = 1 index = n-1+i-1
upper = i - j = -1 index 2n-1+i-1
m[i,j] = non-zero if | i - j | <= 1
m[i,j] = 0 if | i - j | 1
size = 3 n - 2 for size
we can't use row & column major as they are not uniform
we use diagonals
- there are more than and equal number of bands known as square band matrix
- ALl the element in diagonal are same and there are no non-zero elements
m[i,j] = m[i-1,j-1] elements to store n + n-1 A = 2 3 4 | 1 4 index A[i] [j] case 1: if i<=j index = j-i case 2: if i>j index = n + i - j - 1
m =
| 2 3 4 |
| 1 2 3 |
| 4 1 2 |
A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero.
Conditions:
- Only diagonal elements are non-zero.
- Non-zero elements are stored in a 1D array of size ( n ).
Formulas:
- Row-major: ( A[i \cdot (i-1)/2 + (j-1)] )
- Column-major: ( A[(j-1) \cdot (j-1)/2 + (i-1)] )
A lower triangular matrix is a matrix in which all the entries above the main diagonal are zero.
Conditions:
- Non-zero elements satisfy ( i \geq j ).
- Non-zero elements are stored in a 1D array of size ( n(n+1)/2 ).
Formulas:
- Row-major: ( A[i \cdot (i-1)/2 + (j-1)] )
- Column-major: ( A[(j-1) \cdot (2n-j+2)/2 + (i-j)] )
An upper triangular matrix is a matrix in which all the entries below the main diagonal are zero.
Conditions:
- Non-zero elements satisfy ( i \leq j ).
- Non-zero elements are stored in a 1D array of size ( n(n+1)/2 ).
Formulas:
- Row-major: ( A[i \cdot (2n-i+1)/2 + (j-i)] )
- Column-major: ( A[(j \cdot (j-1)/2) + (i-1)] )
A symmetric matrix is a square matrix that is equal to its transpose.
Conditions:
- Non-zero elements satisfy
$$(A[i] [j] = A[j] [i])$$ - Non-zero elements are stored in a 1D array of size ( n(n+1)/2 ).
Formulas:
- Row-major: If ( i \geq j ): ( A[i \cdot (i-1)/2 + (j-1)] ), else: ( A[j \cdot (j-1)/2 + (i-1)] )
- Column-major: If ( i \geq j ): ( A[(j-1) \cdot (2n-j+2)/2 + (i-j)] ), else: ( A[(i-1) \cdot (2n-i+2)/2 + (j-i)] )
A tri-diagonal matrix has non-zero elements only on the main diagonal and the diagonals directly above and below it.
Conditions:
- Non-zero elements satisfy ( |i - j| \leq 1 ).
- Non-zero elements are stored in a 1D array of size ( 3n - 2 ).
Formulas:
-
Row-major:
- Main diagonal: ( A[i-1] )
- Lower diagonal: ( A[n-1 + (i-1)] )
- Upper diagonal: ( A[2n-1 + (i-2)] )
-
Column-major:
- Main diagonal: ( A[i-1] )
- Lower diagonal: ( A[n-1 + (j-1)] )
- Upper diagonal: ( A[2n-1 + (j-2)] )
A band matrix has non-zero elements around the main diagonal within a certain bandwidth.
Conditions:
- Non-zero elements are within bandwidth ( k ).
- Non-zero elements are stored in a 1D array.
Formulas:
- Row-major:
- ( A[i \cdot (2k+1) + (j-i+k)] )
- Column-major:
- ( A[j \cdot (2k+1) + (i-j+k)] )
A Toeplitz matrix has constant diagonals, i.e., each descending diagonal from left to right is constant.
Conditions:
- Non-zero elements satisfy ( A[i] [j] = A[i-1] [j-1] ).
- Non-zero elements are stored in a 1D array of size ( 2n - 1 ).
Formulas:
- Row-major:
- If ( i \leq j ): ( A[j-i] )
- If ( i > j ): ( A[n + i-j-1] )
- Column-major:
- If ( j \leq i ): ( A[i-j] )
- If ( j > i ): ( A[n + j-i-1] )
A sparse matrix is a matrix in which most of the elements are zero.
Conditions:
- Sparse matrices can be stored efficiently using various techniques such as compressed row storage, compressed column storage, or a list of tuples.
Formulas:
- Compressed Row Storage:
- Row-major:
- Values array: ( A[\text{value_index}] )
- Column indices array: ( A[\text{column_index}] )
- Row pointers array: ( A[\text{row_pointer}] )
- Row-major:
- Compressed Column Storage:
- Column-major:
- Values array: ( A[\text{value_index}] )
- Row indices array: ( A[\text{row_index}] )
- Column pointers array: ( A[\text{column_pointer}] )
- Column-major:
These formulas and conditions provide a guide for storing and accessing elements in various types of matrices efficiently using both row-major and column-major orders.