@@ -56,7 +56,7 @@ def test_create_classification_model_no_in_channels(backbone, model_factory: Pri
56
56
with torch .no_grad ():
57
57
assert model (model_input ).output .shape == EXPECTED_CLASSIFICATION_OUTPUT_SHAPE
58
58
59
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
59
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
60
60
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
61
61
def test_create_segmentation_model (backbone , decoder , model_factory : PrithviModelFactory , model_input ):
62
62
model = model_factory .build_model (
@@ -73,7 +73,7 @@ def test_create_segmentation_model(backbone, decoder, model_factory: PrithviMode
73
73
with torch .no_grad ():
74
74
assert model (model_input ).output .shape == EXPECTED_SEGMENTATION_OUTPUT_SHAPE
75
75
76
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
76
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
77
77
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
78
78
def test_create_segmentation_model_no_in_channels (backbone , decoder , model_factory : PrithviModelFactory , model_input ):
79
79
model = model_factory .build_model (
@@ -90,7 +90,7 @@ def test_create_segmentation_model_no_in_channels(backbone, decoder, model_facto
90
90
assert model (model_input ).output .shape == EXPECTED_SEGMENTATION_OUTPUT_SHAPE
91
91
92
92
93
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
93
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
94
94
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
95
95
def test_create_segmentation_model_with_aux_heads (backbone , decoder , model_factory : PrithviModelFactory , model_input ):
96
96
aux_heads_name = ["first_aux" , "second_aux" ]
@@ -115,7 +115,7 @@ def test_create_segmentation_model_with_aux_heads(backbone, decoder, model_facto
115
115
assert output .shape == EXPECTED_SEGMENTATION_OUTPUT_SHAPE
116
116
117
117
118
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
118
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
119
119
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
120
120
def test_create_regression_model (backbone , decoder , model_factory : PrithviModelFactory , model_input ):
121
121
model = model_factory .build_model (
@@ -131,7 +131,7 @@ def test_create_regression_model(backbone, decoder, model_factory: PrithviModelF
131
131
with torch .no_grad ():
132
132
assert model (model_input ).output .shape == EXPECTED_REGRESSION_OUTPUT_SHAPE
133
133
134
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
134
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
135
135
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
136
136
def test_create_regression_model_no_in_channels (backbone , decoder , model_factory : PrithviModelFactory , model_input ):
137
137
model = model_factory .build_model (
@@ -146,7 +146,7 @@ def test_create_regression_model_no_in_channels(backbone, decoder, model_factory
146
146
with torch .no_grad ():
147
147
assert model (model_input ).output .shape == EXPECTED_REGRESSION_OUTPUT_SHAPE
148
148
149
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
149
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
150
150
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
151
151
def test_create_regression_model_with_aux_heads (backbone , decoder , model_factory : PrithviModelFactory , model_input ):
152
152
aux_heads_name = ["first_aux" , "second_aux" ]
@@ -170,7 +170,7 @@ def test_create_regression_model_with_aux_heads(backbone, decoder, model_factory
170
170
assert output .shape == EXPECTED_REGRESSION_OUTPUT_SHAPE
171
171
172
172
173
- @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" , "prithvi_vit_300" ])
173
+ @pytest .mark .parametrize ("backbone" , ["prithvi_vit_100" ])
174
174
@pytest .mark .parametrize ("decoder" , ["FCNDecoder" , "UperNetDecoder" , "IdentityDecoder" ])
175
175
def test_create_model_with_extra_bands (backbone , decoder , model_factory : PrithviModelFactory ):
176
176
model = model_factory .build_model (
0 commit comments