@@ -36,15 +36,6 @@ def _cfg(file: Path = "", **kwargs) -> dict:
36
36
** kwargs ,
37
37
}
38
38
39
- default_cfgs = generate_default_cfgs (
40
- {
41
- "prithvi_swin_90_us" : {
42
- "hf_hub_id" : "ibm-nasa-geospatial/Prithvi-100M" ,
43
- "hf_hub_filename" : "Prithvi_100M.pt"
44
- }
45
- }
46
- )
47
-
48
39
def convert_weights_swin2mmseg (ckpt ):
49
40
# from https://github.com/open-mmlab/mmsegmentation/blob/main/tools/model_converters/swin2mmseg.py
50
41
new_ckpt = OrderedDict ()
@@ -215,37 +206,6 @@ def prepare_features_for_image_model(x):
215
206
return model
216
207
217
208
218
- @register_model
219
- def prithvi_swin_90_us (
220
- pretrained : bool = False , # noqa: FBT002, FBT001
221
- pretrained_bands : list [HLSBands ] | None = None ,
222
- bands : list [int ] | None = None ,
223
- ** kwargs ,
224
- ) -> MMSegSwinTransformer :
225
- """Prithvi Swin 90M"""
226
- if pretrained_bands is None :
227
- pretrained_bands = PRETRAINED_BANDS
228
- if bands is None :
229
- bands = pretrained_bands
230
- logging .info (
231
- f"Model bands not passed. Assuming bands are ordered in the same way as { PRETRAINED_BANDS } .\
232
- Pretrained patch_embed layer may be misaligned with current bands"
233
- )
234
-
235
- model_args = {
236
- "patch_size" : 4 ,
237
- "window_size" : 7 ,
238
- "embed_dim" : 128 ,
239
- "depths" : (2 , 2 , 18 , 2 ),
240
- "in_chans" : 6 ,
241
- "num_heads" : (4 , 8 , 16 , 32 ),
242
- }
243
- transformer = _create_swin_mmseg_transformer (
244
- "prithvi_swin_90_us" , pretrained_bands , bands , pretrained = pretrained , ** dict (model_args , ** kwargs )
245
- )
246
- return transformer
247
-
248
-
249
209
@register_model
250
210
def prithvi_swin_B (
251
211
pretrained : bool = False , # noqa: FBT002, FBT001
0 commit comments