Skip to content

Commit 77b32fb

Browse files
mohammedabdulwahhabmabdulwahhabnvda-mesharma
authored
docs: Clean up of readme for deploying to K8s using helm (ai-dynamo#266)
Co-authored-by: mabdulwahhab <[email protected]> Co-authored-by: Meenakshi Sharma <[email protected]>
1 parent 5a45ff2 commit 77b32fb

File tree

3 files changed

+150
-86
lines changed

3 files changed

+150
-86
lines changed

docs/guides/deploy_to_k8s_using_helm.md

-86
This file was deleted.

docs/images/dynamo-deploy.png

155 KB
Loading

dynamo_deploy.md

+150
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,150 @@
1+
# Deploying Dynamo Inference Graphs to Kubernetes using Helm
2+
3+
This guide will walk you through the process of deploying an inference graph created using the Dynamo SDK onto a Kubernetes cluster. Note that this is currently an experimental feature.
4+
5+
## Dynamo Kubernetes Operator Coming Soon!
6+
7+
![Dynamo Deploy](../images/dynamo-deploy.png)
8+
9+
While this guide covers deployment of Dynamo inference graphs using Helm, the preferred method to deploy an inference graph in the future will be via the Dynamo Kubernetes Operator. Dynamo Kubernetes Operator is a soon to be released cloud platform that will simplify the deployment and management of Dynamo inference graphs. It includes a set of components (Operator, UIs, Kubernetes Custom Resources, etc.) to simplify the deployment and management of Dynamo inference graphs.
10+
11+
Once an inference graph is defined using the Dynamo SDK, it can be deployed onto a Kubernetes cluster using a simple `dynamo deploy` command that orchestrates the following deployment steps:
12+
13+
1. Building docker images from inference graph components on the cluster
14+
2. Intelligently composing the encoded inference graph into a complete deployment on Kubernetes
15+
3. Enabling autoscaling, monitoring, and observability for the inference graph
16+
4. Easy administration of deployments via UI
17+
18+
The Dynamo Kubernetes Operator will be released soon.
19+
20+
## Helm Deployment Guide
21+
22+
### Setting up MicroK8s
23+
24+
Follow these steps to set up a local Kubernetes cluster using MicroK8s:
25+
26+
1. Install MicroK8s:
27+
```bash
28+
sudo snap install microk8s --classic
29+
```
30+
31+
2. Configure user permissions:
32+
```bash
33+
sudo usermod -a -G microk8s $USER
34+
sudo chown -R $USER ~/.kube
35+
```
36+
37+
3. **Important**: Log out and log back in for the permissions to take effect
38+
39+
4. Start MicroK8s:
40+
```bash
41+
microk8s start
42+
```
43+
44+
5. Enable required addons:
45+
```bash
46+
# Enable GPU support
47+
microk8s enable gpu
48+
49+
# Enable storage support
50+
# See: https://microk8s.io/docs/addon-hostpath-storage
51+
microk8s enable storage
52+
```
53+
54+
6. Configure kubectl:
55+
```bash
56+
mkdir -p ~/.kube
57+
microk8s config >> ~/.kube/config
58+
```
59+
60+
After completing these steps, you should be able to use the `kubectl` command to interact with your cluster.
61+
62+
### Installing Required Dependencies
63+
64+
Follow these steps to set up the namespace and install required components:
65+
66+
1. Set environment variables:
67+
```bash
68+
export NAMESPACE=dynamo-playground
69+
export RELEASE_NAME=dynamo-platform
70+
```
71+
72+
2. Install NATS messaging system:
73+
```bash
74+
# Navigate to dependencies directory
75+
cd deploy/Kubernetes/pipeline/dependencies
76+
77+
# Add and update NATS Helm repository
78+
helm repo add nats https://nats-io.github.io/k8s/helm/charts/
79+
helm repo update
80+
81+
# Install NATS with custom values
82+
helm install --namespace ${NAMESPACE} dynamo-platform-nats nats/nats \
83+
--create-namespace \
84+
--values nats-values.yaml
85+
```
86+
87+
3. Install etcd key-value store:
88+
```bash
89+
# Install etcd using Bitnami chart
90+
helm install --namespace ${NAMESPACE} dynamo-platform-etcd \
91+
oci://registry-1.docker.io/bitnamicharts/etcd \
92+
--values etcd-values.yaml
93+
```
94+
95+
After completing these steps, your cluster will have the necessary messaging and storage infrastructure for running Dynamo inference graphs.
96+
97+
### Building and Deploying the Pipeline
98+
99+
Follow these steps to containerize and deploy your inference pipeline:
100+
101+
1. Build and containerize the pipeline:
102+
```bash
103+
# Navigate to example directory
104+
cd examples/hello_world
105+
106+
# Set runtime image name
107+
export DYNAMO_IMAGE=<dynamo_runtime_image_name>
108+
109+
# Build and containerize the Frontend service
110+
dynamo build --containerize hello_world:Frontend
111+
```
112+
113+
2. Push container to registry:
114+
```bash
115+
# Tag the built image for your registry
116+
docker tag <BUILT_IMAGE_TAG> <TAG>
117+
118+
# Push to your container registry
119+
docker push <TAG>
120+
```
121+
122+
3. Deploy using Helm:
123+
```bash
124+
# Set release name for Helm
125+
export HELM_RELEASE=helloworld
126+
127+
# Generate Helm values file from Frontend service
128+
dynamo get frontend > pipeline-values.yaml
129+
130+
# Install/upgrade Helm release
131+
helm upgrade -i "$HELM_RELEASE" ./chart \
132+
-f pipeline-values.yaml \
133+
--set image=<TAG> \
134+
--set dynamoIdentifier="hello_world:Frontend" \
135+
-n "$NAMESPACE"
136+
```
137+
138+
4. Test the deployment:
139+
```bash
140+
# Forward the service port to localhost
141+
kubectl -n ${NAMESPACE} port-forward svc/helloworld-frontend 3000:80
142+
143+
# Test the API endpoint
144+
curl -X 'POST' 'http://localhost:3000/generate' \
145+
-H 'accept: text/event-stream' \
146+
-H 'Content-Type: application/json' \
147+
-d '{"text": "test"}'
148+
```
149+
150+
For convenience, you can find a complete deployment script at `deploy/Kubernetes/pipeline/deploy.sh` that automates all of these steps.

0 commit comments

Comments
 (0)