Date and Time: Feb 1, 2025, 11:00 (EST)
Link: https://leetcode.com/problems/find-k-pairs-with-smallest-sums
You are given two integer arrays nums1
and nums2
sorted in non-decreasing order and an integer k
.
Define a pair (u, v)
which consists of one element from the first array and one element from the second array.
Return the k
pairs (u1, v1), (u2, v2), ..., (uk, vk)
with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Output: [[1,2],[1,4],[1,6]]
Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Output: [[1,1],[1,1]]
Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
-
1 <= nums1.length, nums2.length <= 10^5
-
-10^9 <= nums1[i], nums2[i] <= 10^9
-
nums1
andnums2
both are sorted in non-decreasing order. -
1 <= k <= 10^4
-
k <= nums1.length * nums2.length
-
Use minHeap
minHeap[]
to save the sum of every elements fromnums1
with the first index ofnums2
, save[sum, 0]
intominHeap
. -
Use while loop for
k > 0 and minHeap
to add the smallest pair we pop fromminHeap[]
, then we add the next element ofnums2
with the current val fromnums1
bysum-nums2[j]
. So we add[sum-nums2[j]+nums2[j+1], j+1]
, and we repeat this process, so we are guaranteed to get the next smallest sum, which is not necessary to be the next element ofnums2
. (Example 2)
class Solution:
def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:
# Use heap to store [sum, first index of nums2] for all elements from nums1
# Add the pair to res[], add the next pair of current i from nums1 with the next element from nums2 to heap
# Repeat until k=0 or tmp[] is out
# TC: O(m*logm + min(m, k) * logm), m=len(nums1), SC: O(m+k)
minHeap, res = [], []
# Add pairs of [sum, first index of nums2] for nums1
for i in nums1:
heapq.heappush(minHeap, [i+nums2[0], 0])
while k > 0 and minHeap:
val, j = heapq.heappop(minHeap)
i = val - nums2[j]
res.append([i, nums2[j]])
# Add the next val from nums2
if j+1 < len(nums2):
heapq.heappush(minHeap, [i+nums2[j+1],j+1])
k -= 1
return res
Time Complexity:
Space Complexity: