Date and Time: Jan 22, 2025, 22:34 (EST)
Link: https://leetcode.com/problems/maximum-sum-circular-subarray
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.
-
n == nums.length
-
1 <= n <= 3 * 10^4
-
-3 * 10^4 <= nums[i] <= 3 * 10^4
Notice that, if we find a globalMin
(no matter a single element or a subarray), the rest of the the subarray will be or include the maximum from nums
. So everytime, we use the Kadane's algorithm to update curMin
, curMax
and globalMin
and globalMax
. Finally, we return the maximum of either globalMax
or sum(nums) - globalMin
.
class Solution:
def maxSubarraySumCircular(self, nums: List[int]) -> int:
# TC: O(n), n=len(nums), SC: O(1)
# Use kadane's alg to update curMin and curMax
curMax = curMin = 0
globalMax = globalMin = 0
# if all elements are negative, return the max negative element
if max(nums) < 0:
return max(nums)
for n in nums:
curMax = max(n, curMax + n)
globalMax = max(curMax, globalMax)
curMin = min(n, curMin + n)
globalMin = min(globalMin, curMin)
return max(globalMax, sum(nums) - globalMin)
Time Complexity:
Space Complexity: