|
| 1 | +<h2>1557. Minimum Number of Vertices to Reach All Nodes</h2><h3>Medium</h3><hr><div><p>Given a<strong> directed acyclic graph</strong>, with <code>n</code> vertices numbered from <code>0</code> to <code>n-1</code>, and an array <code>edges</code> where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> represents a directed edge from node <code>from<sub>i</sub></code> to node <code>to<sub>i</sub></code>.</p> |
| 2 | + |
| 3 | +<p>Find <em>the smallest set of vertices from which all nodes in the graph are reachable</em>. It's guaranteed that a unique solution exists.</p> |
| 4 | + |
| 5 | +<p>Notice that you can return the vertices in any order.</p> |
| 6 | + |
| 7 | +<p> </p> |
| 8 | +<p><strong>Example 1:</strong></p> |
| 9 | + |
| 10 | +<p><img alt="" src="https://assets.leetcode.com/uploads/2020/07/07/untitled22.png" style="width: 231px; height: 181px;"></p> |
| 11 | + |
| 12 | +<pre><strong>Input:</strong> n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]] |
| 13 | +<strong>Output:</strong> [0,3] |
| 14 | +<b>Explanation: </b>It's not possible to reach all the nodes from a single vertex. From 0 we can reach [0,1,2,5]. From 3 we can reach [3,4,2,5]. So we output [0,3].</pre> |
| 15 | + |
| 16 | +<p><strong>Example 2:</strong></p> |
| 17 | + |
| 18 | +<p><img alt="" src="https://assets.leetcode.com/uploads/2020/07/07/untitled.png" style="width: 201px; height: 201px;"></p> |
| 19 | + |
| 20 | +<pre><strong>Input:</strong> n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]] |
| 21 | +<strong>Output:</strong> [0,2,3] |
| 22 | +<strong>Explanation: </strong>Notice that vertices 0, 3 and 2 are not reachable from any other node, so we must include them. Also any of these vertices can reach nodes 1 and 4. |
| 23 | +</pre> |
| 24 | + |
| 25 | +<p> </p> |
| 26 | +<p><strong>Constraints:</strong></p> |
| 27 | + |
| 28 | +<ul> |
| 29 | + <li><code>2 <= n <= 10^5</code></li> |
| 30 | + <li><code>1 <= edges.length <= min(10^5, n * (n - 1) / 2)</code></li> |
| 31 | + <li><code>edges[i].length == 2</code></li> |
| 32 | + <li><code>0 <= from<sub>i,</sub> to<sub>i</sub> < n</code></li> |
| 33 | + <li>All pairs <code>(from<sub>i</sub>, to<sub>i</sub>)</code> are distinct.</li> |
| 34 | +</ul></div> |
0 commit comments