Skip to content

Commit 818d248

Browse files
committed
docs:专栏更新
1 parent 76f45be commit 818d248

8 files changed

+1180
-3
lines changed

.vscode/.server-controller-port.log

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
{
2-
"port": 13452,
3-
"time": 1740476476079,
2+
"port": 9145,
3+
"time": 1741529993430,
44
"version": "0.0.3"
55
}

docs/.vuepress/config.js

+17-1
Original file line numberDiff line numberDiff line change
@@ -993,6 +993,7 @@ module.exports = {
993993
"01-扫码支付后都发生了啥?",
994994
"02-大厂的第三方支付业务架构设计",
995995
"wechat-pay-development-guide-avoid-pitfalls",
996+
"high-avail-payments",
996997
]
997998
}],
998999

@@ -2174,7 +2175,21 @@ module.exports = {
21742175
"building-neural-networks-with-pytorch",
21752176
"pytorch-cifar10-image-classifier-tutorial",
21762177
]
2177-
}, ],
2178+
},
2179+
2180+
{
2181+
title: "NLP",
2182+
collapsable: false,
2183+
sidebarDepth: 0,
2184+
children: [
2185+
"basic-of-nlp",
2186+
"text-preprocessing-overview",
2187+
"text-vectorization-guide",
2188+
"text-data-analysis-practical-guide",
2189+
]
2190+
},
2191+
2192+
],
21782193

21792194
"/md/AI/langchain4j/": [{
21802195
title: "LangChain4j基础",
@@ -2294,6 +2309,7 @@ module.exports = {
22942309
"building-effective-agents",
22952310
"ai-agent-is-coming",
22962311
"software-development-in-AI2",
2312+
"overcoming-fear-uncertainty-and-doubt-in-the-era-of-ai-transformation",
22972313
]
22982314
},
22992315

docs/md/AI/ml/basic-of-nlp.md

+212
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,212 @@
1+
# NLP入门
2+
3+
## 0 目标
4+
5+
- 了解啥是NLP
6+
- 了解NLP的发展简史
7+
- 了解NLP的应用场景
8+
- 了解本教程中的NLP
9+
10+
## 1 啥是NLP?
11+
12+
计算机科学与语言学中关注于计算机与人类语言间转换的领域。
13+
14+
## 2 发展简史
15+
16+
![](https://my-img.javaedge.com.cn/javaedge-blog/2025/03/8b8f1018e60cc213528e58c83629a5d7.png)
17+
18+
![](https://my-img.javaedge.com.cn/javaedge-blog/2025/03/47ec99996359ae976bebece4ee28ffeb.png)
19+
20+
![](https://my-img.javaedge.com.cn/javaedge-blog/2025/03/97d97fbc38d6e002d3808b6b545b65a3.png)
21+
22+
![](https://my-img.javaedge.com.cn/javaedge-blog/2025/03/24ed2c62a015d244eb3b792e1fdf6a8e.png)
23+
24+
![](https://my-img.javaedge.com.cn/javaedge-blog/2025/03/5f816f6e0b649e7e023aae10c84d48c8.png)
25+
26+
## 3 应用场景
27+
28+
- 语音助手
29+
- 机器翻译
30+
- 搜索引擎
31+
- 智能问答
32+
- ...
33+
34+
### 3.1 语音助手
35+
36+
科大讯飞语音识别技术访谈:
37+
38+
<video src="/Volumes/mobileData/data/%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%96%99/01-%E9%98%B6%E6%AE%B51-3%EF%BC%88python%E5%9F%BA%E7%A1%80%20%E3%80%81python%E9%AB%98%E7%BA%A7%E3%80%81%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%EF%BC%89/03-%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8ENLP/01-%E8%AE%B2%E4%B9%89/HTML/mkdocs_NLP/img/xunfei.mp4"></video>
39+
40+
### 3.2 机器翻译
41+
42+
CCTV上的机器翻译系统, 让世界聊得来!
43+
44+
<video src="/Volumes/mobileData/data/%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%96%99/01-%E9%98%B6%E6%AE%B51-3%EF%BC%88python%E5%9F%BA%E7%A1%80%20%E3%80%81python%E9%AB%98%E7%BA%A7%E3%80%81%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%EF%BC%89/03-%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8ENLP/01-%E8%AE%B2%E4%B9%89/HTML/mkdocs_NLP/img/fanyi.mp4"></video>
45+
46+
## 4 本专栏的NLP
47+
48+
### 4.1 课程理念与宗旨
49+
50+
本系列课程将开启你的NLP之旅, 全面从企业实战角度出发, 课程设计内容对应企业开发标准流程和企业发展路径, 助力你成为一名真正的AI-NLP工程师。
51+
52+
### 4.2 内容先进性说明
53+
54+
本课程内容结合当下时代背景, 更多关注NLP在深度学习领域的进展, 这也将是未来几年甚至几十年NLP的重要发展方向, 简化传统NLP的内容, 如语言规则, 传统模型, 特征工程等, 带来效果更好, 应用更广的Transfomer, 迁移学习等先进内容。
55+
56+
### 4.3 内容大纲概要
57+
58+
| 模块名称 | 主要内容 | 案例 |
59+
| ------------ | ------------------------------------------------------------ | -------------------------------- |
60+
| 文本预处理 | 文本处理基本方法,文本张量表示、文本数据分析、文本增强方法等 | 路透社新闻类型分类任务 |
61+
| 经典序列模型 | HMM与CRF模型的作用, 使用过程, 差异比较以及发展现状等 | |
62+
| RNN及其变体 | RNN, LSTM, GRU模型的作用, 构建, 优劣势比较等 | 全球人名分类任务, 英译法翻译任务 |
63+
| Transformer | Transformer模型的作用, 细节原理解析, 模型构建过程等 | 构建基于Transformer的语言模型 |
64+
| 迁移学习 | fasttext工具的作用, 迁移学习理论, NLP标准数据集和预训练模型的使用等 | 全国酒店评论情感分析任务 |
65+
66+
## 5 云服务器使用入门
67+
68+
### 5.1 基本操作
69+
70+
```shell
71+
# 查看cpu逻辑核
72+
lscpu
73+
```
74+
75+
```text
76+
Architecture: x86_64
77+
CPU op-mode(s): 32-bit, 64-bit
78+
Byte Order: Little Endian
79+
CPU(s): 4
80+
On-line CPU(s) list: 0-3
81+
Thread(s) per core: 2
82+
Core(s) per socket: 2
83+
座: 1
84+
NUMA 节点: 1
85+
厂商 ID: GenuineIntel
86+
CPU 系列: 6
87+
型号: 85
88+
型号名称: Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz
89+
步进: 7
90+
CPU MHz: 2500.000
91+
BogoMIPS: 5000.00
92+
超管理器厂商: KVM
93+
虚拟化类型: 完全
94+
L1d 缓存: 32K
95+
L1i 缓存: 32K
96+
L2 缓存: 1024K
97+
L3 缓存: 36608K
98+
NUMA 节点0 CPU: 0-3
99+
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat avx512_vnni
100+
```
101+
102+
查看计算环境:
103+
104+
```shell
105+
cd /home/ec2-user/
106+
vim README
107+
```
108+
109+
你将看到所有的虚拟环境
110+
111+
```text
112+
Please use one of the following commands to start the required environment with the framework of your choice:
113+
for MXNet(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN) ____________________________________ source activate mxnet_p36
114+
for MXNet(+Keras2) with Python2 (CUDA 10.1 and Intel MKL-DNN) ____________________________________ source activate mxnet_p27
115+
for MXNet(+AWS Neuron) with Python3 ___________________________________________________ source activate aws_neuron_mxnet_p36
116+
for TensorFlow(+Keras2) with Python3 (CUDA 10.0 and Intel MKL-DNN) __________________________ source activate tensorflow_p36
117+
for TensorFlow(+Keras2) with Python2 (CUDA 10.0 and Intel MKL-DNN) __________________________ source activate tensorflow_p27
118+
for TensorFlow(+AWS Neuron) with Python3 _________________________________________ source activate aws_neuron_tensorflow_p36
119+
for TensorFlow 2(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN) _______________________ source activate tensorflow2_p36
120+
for TensorFlow 2(+Keras2) with Python2 (CUDA 10.1 and Intel MKL-DNN) _______________________ source activate tensorflow2_p27
121+
for TensorFlow 2.3 with Python3.7 (CUDA 10.2 and Intel MKL-DNN) _____________________ source activate tensorflow2_latest_p37
122+
for PyTorch 1.4 with Python3 (CUDA 10.1 and Intel MKL) _________________________________________ source activate pytorch_p36
123+
for PyTorch 1.4 with Python2 (CUDA 10.1 and Intel MKL) _________________________________________ source activate pytorch_p27
124+
for PyTorch 1.6 with Python3 (CUDA 10.1 and Intel MKL) ________________________________ source activate pytorch_latest_p36
125+
for PyTorch (+AWS Neuron) with Python3 ______________________________________________ source activate aws_neuron_pytorch_p36
126+
for Chainer with Python2 (CUDA 10.0 and Intel iDeep) ___________________________________________ source activate chainer_p27
127+
for Chainer with Python3 (CUDA 10.0 and Intel iDeep) ___________________________________________ source activate chainer_p36
128+
for base Python2 (CUDA 10.0) _______________________________________________________________________ source activate python2
129+
for base Python3 (CUDA 10.0) _______________________________________________________________________ source activate python3
130+
```
131+
132+
如需用python3 + pytorch新版:
133+
134+
```shell
135+
source activate pytorch_latest_p36
136+
```
137+
138+
查看具体的python和pip版本:
139+
140+
```shell
141+
python3 -V
142+
143+
# 查看pip版本
144+
pip -V
145+
146+
# 查看重点的科学计算包,tensorflow,pytorch等
147+
pip list
148+
```
149+
150+
> - 输出效果:
151+
152+
```text
153+
Python 3.6.10 :: Anaconda, Inc.
154+
pip 20.0.2 from /home/ec2-user/anaconda3/envs/pytorch_latest_p36/lib/python3.6/site-packages/pip (python 3.6)
155+
```
156+
157+
------
158+
159+
- 查看图数据情况:
160+
161+
```shell
162+
# 开启图数据库,这里后期我们将重点学习的数据库
163+
neo4j start
164+
165+
# 关闭数据库
166+
neo4j stop
167+
```
168+
169+
------
170+
171+
> - 输出效果:
172+
173+
```text
174+
Active database: graph.db
175+
Directories in use:
176+
home: /var/lib/neo4j
177+
config: /etc/neo4j
178+
logs: /var/log/neo4j
179+
plugins: /var/lib/neo4j/plugins
180+
import: /var/lib/neo4j/import
181+
data: /var/lib/neo4j/data
182+
certificates: /var/lib/neo4j/certificates
183+
run: /var/run/neo4j
184+
Starting Neo4j.
185+
Started neo4j (pid 17565). It is available at http://0.0.0.0:7474/
186+
There may be a short delay until the server is ready.
187+
See /var/log/neo4j/neo4j.log for current status.
188+
189+
Stopping Neo4j.. stopped
190+
```
191+
192+
------
193+
194+
- 运行一个使用Pytorch的程序:
195+
196+
```shell
197+
cd /data
198+
199+
python3 pytorch_demo.py
200+
```
201+
202+
输出效:
203+
204+
```text
205+
Net(
206+
(conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
207+
(conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
208+
(fc1): Linear(in_features=576, out_features=120, bias=True)
209+
(fc2): Linear(in_features=120, out_features=84, bias=True)
210+
(fc3): Linear(in_features=84, out_features=10, bias=True)
211+
)
212+
```

0 commit comments

Comments
 (0)