Skip to content

ProjectTo causes scalar indexing when taking adjoints of complex CuArray #624

Open
@DomCRose

Description

@DomCRose

As the title says. Code to see this:

using CUDA, Zygote
function test_func(a, b)
    return sum(abs2, a .+ b')
end
a = CUDA.rand(ComplexF64, 3)
b = CUDA.rand(3)
gradient(test_func, a, b)

Produces:

ERROR: Scalar indexing is disallowed.
Invocation of getindex resulted in scalar indexing of a GPU array.
This is typically caused by calling an iterating implementation of a method.
Such implementations *do not* execute on the GPU, but very slowly on the CPU,
and therefore are only permitted from the REPL for prototyping purposes.
If you did intend to index this array, annotate the caller with @allowscalar.
Stacktrace:
  [1] error(s::String)
    @ Base .\error.jl:35
  [2] assertscalar(op::String)
    @ GPUArraysCore C:\Users\domin\.julia\packages\GPUArraysCore\uOYfN\src\GPUArraysCore.jl:103
  [3] getindex(::CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}, ::Int64, ::Int64)
    @ GPUArrays C:\Users\domin\.julia\packages\GPUArrays\5XhED\src\host\indexing.jl:9
  [4] getindex
    @ C:\Users\domin\.julia\juliaup\julia-1.9.0+0.x64.w64.mingw32\share\julia\stdlib\v1.9\LinearAlgebra\src\adjtrans.jl:303 [inlined]
  [5] _unsafe_getindex_rs
    @ .\reshapedarray.jl:251 [inlined]
  [6] _unsafe_getindex
    @ .\reshapedarray.jl:248 [inlined]
  [7] getindex
    @ .\reshapedarray.jl:236 [inlined]
  [8] iterate
    @ .\abstractarray.jl:1220 [inlined]
  [9] iterate
    @ .\abstractarray.jl:1218 [inlined]
 [10] iterate
    @ .\generator.jl:44 [inlined]
 [11] _collect(c::Base.ReshapedArray{ComplexF64, 1, LinearAlgebra.Adjoint{ComplexF64, CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}}}, itr::Base.Generator{Base.ReshapedArray{ComplexF64, 1, LinearAlgebra.Adjoint{ComplexF64, CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}}}, ChainRulesCore.ProjectTo{Float64, NamedTuple{(), Tuple{}}}}, #unused#::Base.EltypeUnknown, isz::Base.HasShape{1})
    @ Base .\array.jl:802
 [12] collect_similar
    @ .\array.jl:711 [inlined]
 [13] map
    @ .\abstractarray.jl:3261 [inlined]
 [14] (::ChainRulesCore.ProjectTo{AbstractArray, NamedTuple{(:element, :axes), Tuple{ChainRulesCore.ProjectTo{Float64, NamedTuple{(), Tuple{}}}, Tuple{Base.OneTo{Int64}}}}})(dx::LinearAlgebra.Adjoint{ComplexF64, CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}})
    @ ChainRulesCore C:\Users\domin\.julia\packages\ChainRulesCore\0t04l\src\projection.jl:236
 [15] ProjectTo
    @ C:\Users\domin\.julia\packages\ChainRulesCore\0t04l\src\projection.jl:414 [inlined]
 [16] _project
    @ C:\Users\domin\.julia\packages\Zygote\JeHtr\src\compiler\chainrules.jl:189 [inlined]
 [17] unbroadcast(x::LinearAlgebra.Adjoint{Float64, CuArray{Float64, 1, CUDA.Mem.DeviceBuffer}}, x̄::CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer})
    @ Zygote C:\Users\domin\.julia\packages\Zygote\JeHtr\src\lib\broadcast.jl:62
 [18] #1172
    @ C:\Users\domin\.julia\packages\Zygote\JeHtr\src\lib\broadcast.jl:83 [inlined]
 [19] map
    @ .\tuple.jl:274 [inlined]
 [20] #1171
    @ C:\Users\domin\.julia\packages\Zygote\JeHtr\src\lib\broadcast.jl:83 [inlined]
 [21] #3754#back
    @ C:\Users\domin\.julia\packages\ZygoteRules\OgCVT\src\adjoint.jl:71 [inlined]
 [22] Pullback
    @ .\REPL[1]:2 [inlined]
 [23] (::Zygote.Pullback{Tuple{typeof(test_func), CuArray{ComplexF64, 1, CUDA.Mem.DeviceBuffer}, CuArray{Float64, 1, CUDA.Mem.DeviceBuffer}}, Tuple{Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, ComposedFunction{Zygote.Pullback{Tuple{Zygote.var"#1441#1442", typeof(abs2), CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{}}, Zygote.var"#4197#back#1437"{Zygote.var"#1433#1436"{CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}}}, Zygote.var"#3978#back#1283"{Zygote.var"#1279#1282"{CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}}}}, typeof(ZygoteRules.unthunk_tangent)}, Zygote.var"#3754#back#1177"{Zygote.var"#1171#1175"{Tuple{CuArray{ComplexF64, 1, CUDA.Mem.DeviceBuffer}, LinearAlgebra.Adjoint{Float64, CuArray{Float64, 1, CUDA.Mem.DeviceBuffer}}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{}}}})(Δ::Float64)
    @ Zygote C:\Users\domin\.julia\packages\Zygote\JeHtr\src\compiler\interface2.jl:0
 [24] (::Zygote.var"#75#76"{Zygote.Pullback{Tuple{typeof(test_func), CuArray{ComplexF64, 1, CUDA.Mem.DeviceBuffer}, CuArray{Float64, 1, CUDA.Mem.DeviceBuffer}}, Tuple{Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, ComposedFunction{Zygote.Pullback{Tuple{Zygote.var"#1441#1442", typeof(abs2), CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{}}, Zygote.var"#4197#back#1437"{Zygote.var"#1433#1436"{CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}}}, Zygote.var"#3978#back#1283"{Zygote.var"#1279#1282"{CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}}}}, typeof(ZygoteRules.unthunk_tangent)}, Zygote.var"#3754#back#1177"{Zygote.var"#1171#1175"{Tuple{CuArray{ComplexF64, 1, CUDA.Mem.DeviceBuffer}, LinearAlgebra.Adjoint{Float64, CuArray{Float64, 1, CUDA.Mem.DeviceBuffer}}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{}}}}})(Δ::Float64)
    @ Zygote C:\Users\domin\.julia\packages\Zygote\JeHtr\src\compiler\interface.jl:45
 [25] gradient(::Function, ::CuArray{ComplexF64, 1, CUDA.Mem.DeviceBuffer}, ::Vararg{Any})
    @ Zygote C:\Users\domin\.julia\packages\Zygote\JeHtr\src\compiler\interface.jl:97
 [26] top-level scope
    @ REPL[11]:1
 [27] top-level scope
    @ C:\Users\domin\.julia\packages\CUDA\tVtYo\src\initialization.jl:185

Interestingly, making a real and b complex allows it to run, but errors on display as the output type for the b gradient is becomes Base.ReshapedArray{ComplexF64, 1, LinearAlgebra.Adjoint{ComplexF64, CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}}} which it refuses to print. Collecting that array produces a CuArray with the correct gradient.

The issue (at least with a complex and b real) seems to stem from

dy = eltype(dx) <: Real ? vec(dx) : adjoint(dx)
creating a Adjoint{ComplexF64, CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, which when then reshaped at
reshape(dx, project.axes)
creates a Base.ReshapedArray{ComplexF64, 1, Adjoint{ComplexF64, CuArray{ComplexF64, 2, CUDA.Mem.DeviceBuffer}}, Tuple{Base.MultiplicativeInverses.SignedMultiplicativeInverse{Int64}}}. Dispatch then sees this as an AbstractArray and sends it down base paths when map is called at
S <: T ? dy : map(project.element, dy)
rather than CUDA paths, resulting in scalar indexing.

When a is real and b is complex, the element type of the gradient S matches the element type of the primal T, so the map in

S <: T ? dy : map(project.element, dy)
is not hit and instead the reshaped adjoint CuArray escapes, which I assume then hits scalar indexing show methods when dispatched for printing. However, in a more complicated function I guess this tangent would then enter later pullbacks and cause scalar indexing before gradient returns.

As far as I understand it, this would ideally be fixed by better wrapper array handling in Base / CuArray, but that seems like a hard and long lived issue. In the meantime I'm not sure what the best way to fix this would be, and whether that responsibility lies with CUDA or ChainRulesCore. Given the leaking of the wrapped array as a gradient of b in the a real, b complex case, perhaps there could be some tweaks to wrapped array handling here. Perhaps when the typeof dx is an Adjoint(...) then the reshape should be replaced by an adjoint followed by a broadcast of conj, or the earlier adjoint call in the ProjectTo{Adjoint} method should be a conj broadcast instead? Not sure what would be correct.

Metadata

Metadata

Assignees

No one assigned

    Labels

    ProjectTorelated to the projection functionalitybugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions