1- using NNlib: DenseConvDims
1+ using NNlib: ConvDims
22
33
44# descriptor
@@ -44,7 +44,7 @@ function ConvDesc(T, N, padding, stride, dilation, mode, groupcount)
4444 return this
4545end
4646
47- function ConvDesc (T, cdims:: DenseConvDims )
47+ function ConvDesc (T, cdims:: ConvDims )
4848 pd = NNlib. padding (cdims)
4949 if ! all (pd[1 : 2 : end ] .== pd[2 : 2 : end ])
5050 @warn (" CuDNN does not support asymmetric padding; defaulting to symmetric choice" )
@@ -69,7 +69,7 @@ function cudnnConvolutionBiasActivationForward(y::CuArray{T,N}, x::CuArray{T,N},
6969end
7070
7171function cudnnConvolutionForward (y:: CuArray{T,N} , x:: CuArray{T,N} , w:: CuArray{T,N} ,
72- cdims:: DenseConvDims ; algo= 0 , alpha= 1 , beta= 0 ) where {T,N}
72+ cdims:: ConvDims ; algo= 0 , alpha= 1 , beta= 0 ) where {T,N}
7373 @workspace size= @argout (
7474 cudnnGetConvolutionForwardWorkspaceSize (
7575 handle (), TensorDesc (x),
@@ -87,7 +87,7 @@ function cudnnConvolutionForward(y::CuArray{T,N}, x::CuArray{T,N}, w::CuArray{T,
8787end
8888
8989function cudnnConvolutionBackwardData (dx:: CuArray{T,N} , w:: CuArray{T,N} , dy:: CuArray{T,N} ,
90- cdims:: DenseConvDims ; algo= 0 , alpha= 1 , beta= 0 ) where {T,N}
90+ cdims:: ConvDims ; algo= 0 , alpha= 1 , beta= 0 ) where {T,N}
9191 @workspace size= @argout (
9292 cudnnGetConvolutionBackwardDataWorkspaceSize (
9393 handle (), FilterDesc (w),
@@ -106,7 +106,7 @@ function cudnnConvolutionBackwardData(dx::CuArray{T,N}, w::CuArray{T,N}, dy::CuA
106106end
107107
108108function cudnnConvolutionBackwardFilter (dw:: CuArray{T,N} , x:: CuArray{T,N} , dy:: CuArray{T,N} ,
109- cdims:: DenseConvDims ; algo= 0 , alpha= 1 , beta= 0 ) where {T,N}
109+ cdims:: ConvDims ; algo= 0 , alpha= 1 , beta= 0 ) where {T,N}
110110 @workspace size= @argout (
111111 cudnnGetConvolutionBackwardFilterWorkspaceSize (
112112 handle (), TensorDesc (x),
0 commit comments