-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathgc-mmtk.c
1236 lines (1073 loc) · 44.7 KB
/
gc-mmtk.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "gc-common.h"
#include "gc-tls-mmtk.h"
#include "gc-wb-mmtk.h"
#include "mmtkMutator.h"
#include "threading.h"
// File exists in the binding
#include "mmtk.h"
#ifdef __cplusplus
extern "C" {
#endif
// ========================================================================= //
// Julia specific
// ========================================================================= //
extern jl_value_t *cmpswap_names JL_GLOBALLY_ROOTED;
extern const unsigned pool_sizes[];
extern jl_mutex_t finalizers_lock;
// FIXME: Should the values below be shared between both GC's?
// Note that MMTk uses a hard max heap limit, which is set by default
// as 70% of the free available memory. The min heap is set as the
// default_collect_interval variable below.
// max_total_memory is a suggestion. We try very hard to stay
// under this limit, but we will go above it rather than halting.
#ifdef _P64
typedef uint64_t memsize_t;
static const size_t default_collect_interval = 5600 * 1024 * sizeof(void*);
// We expose this to the user/ci as jl_gc_set_max_memory
static memsize_t max_total_memory = (memsize_t) 2 * 1024 * 1024 * 1024 * 1024 * 1024;
#else
typedef uint32_t memsize_t;
static const size_t default_collect_interval = 3200 * 1024 * sizeof(void*);
// Work really hard to stay within 2GB
// Alternative is to risk running out of address space
// on 32 bit architectures.
#define MAX32HEAP 1536 * 1024 * 1024
static memsize_t max_total_memory = (memsize_t) MAX32HEAP;
#endif
// ========================================================================= //
// Defined by the binding
// ========================================================================= //
extern void mmtk_julia_copy_stack_check(int copy_stack);
extern void mmtk_gc_init(uintptr_t min_heap_size, uintptr_t max_heap_size, uintptr_t n_gcthreads, uintptr_t header_size, uintptr_t tag);
extern void mmtk_object_reference_write_post(void* mutator, const void* parent, const void* ptr);
extern void mmtk_object_reference_write_slow(void* mutator, const void* parent, const void* ptr);
extern void* mmtk_alloc(void* mutator, size_t size, size_t align, size_t offset, int allocator);
extern void mmtk_post_alloc(void* mutator, void* refer, size_t bytes, int allocator);
extern void mmtk_store_obj_size_c(void* obj, size_t size);
extern const void* MMTK_SIDE_LOG_BIT_BASE_ADDRESS;
extern const void* MMTK_SIDE_VO_BIT_BASE_ADDRESS;
// ========================================================================= //
// GC Initialization and Control
// ========================================================================= //
void jl_gc_init(void) {
// TODO: use jl_options.heap_size_hint to set MMTk's fixed heap size? (see issue: https://github.com/mmtk/mmtk-julia/issues/167)
JL_MUTEX_INIT(&finalizers_lock, "finalizers_lock");
arraylist_new(&to_finalize, 0);
arraylist_new(&finalizer_list_marked, 0);
gc_num.interval = default_collect_interval;
gc_num.allocd = 0;
gc_num.max_pause = 0;
gc_num.max_memory = 0;
// Necessary if we want to use Julia heap resizing heuristics
uint64_t mem_reserve = 250*1024*1024; // LLVM + other libraries need some amount of memory
uint64_t min_heap_size_hint = mem_reserve + 1*1024*1024;
uint64_t hint = jl_options.heap_size_hint;
// check if heap size specified on command line
if (jl_options.heap_size_hint == 0) {
char *cp = getenv(HEAP_SIZE_HINT);
if (cp)
hint = parse_heap_size_hint(cp, "JULIA_HEAP_SIZE_HINT=\"<size>[<unit>]\"");
}
#ifdef _P64
if (hint == 0) {
uint64_t constrained_mem = uv_get_constrained_memory();
if (constrained_mem > 0 && constrained_mem < uv_get_total_memory())
hint = constrained_mem;
}
#endif
if (hint) {
if (hint < min_heap_size_hint)
hint = min_heap_size_hint;
jl_gc_set_max_memory(hint - mem_reserve);
}
// MMTK supports setting the heap size using the
// MMTK_MIN_HSIZE and MMTK_MAX_HSIZE environment variables
long long min_heap_size;
long long max_heap_size;
char* min_size_def = getenv("MMTK_MIN_HSIZE");
char* min_size_gb = getenv("MMTK_MIN_HSIZE_G");
char* max_size_def = getenv("MMTK_MAX_HSIZE");
char* max_size_gb = getenv("MMTK_MAX_HSIZE_G");
// If min and max values are not specified, set them to 0 here
// and use stock heuristics as defined in the binding
if (min_size_def != NULL) {
char *p;
double min_size = strtod(min_size_def, &p);
min_heap_size = (long) 1024 * 1024 * min_size;
} else if (min_size_gb != NULL) {
char *p;
double min_size = strtod(min_size_gb, &p);
min_heap_size = (long) 1024 * 1024 * 1024 * min_size;
} else {
min_heap_size = 0;
}
if (max_size_def != NULL) {
char *p;
double max_size = strtod(max_size_def, &p);
max_heap_size = (long) 1024 * 1024 * max_size;
} else if (max_size_gb != NULL) {
char *p;
double max_size = strtod(max_size_gb, &p);
max_heap_size = (long) 1024 * 1024 * 1024 * max_size;
} else {
max_heap_size = 0;
}
// Assert that the number of stock GC threads is 0; MMTK uses the number of threads in jl_options.ngcthreads
assert(jl_n_gcthreads == 0);
// Check that the julia_copy_stack rust feature has been defined when the COPY_STACK has been defined
int copy_stacks;
#ifdef COPY_STACKS
copy_stacks = 1;
#else
copy_stacks = 0;
#endif
mmtk_julia_copy_stack_check(copy_stacks);
// if only max size is specified initialize MMTk with a fixed size heap
// TODO: We just assume mark threads means GC threads, and ignore the number of concurrent sweep threads.
// If the two values are the same, we can use either. Otherwise, we need to be careful.
uintptr_t gcthreads = jl_options.nmarkthreads;
if (max_size_def != NULL || (max_size_gb != NULL && (min_size_def == NULL && min_size_gb == NULL))) {
mmtk_gc_init(0, max_heap_size, gcthreads, (sizeof(jl_taggedvalue_t)), jl_buff_tag);
} else {
mmtk_gc_init(min_heap_size, max_heap_size, gcthreads, (sizeof(jl_taggedvalue_t)), jl_buff_tag);
}
}
void jl_start_gc_threads(void) {
jl_ptls_t ptls = jl_current_task->ptls;
mmtk_initialize_collection((void *)ptls);
}
void jl_init_thread_heap(struct _jl_tls_states_t *ptls) JL_NOTSAFEPOINT {
jl_thread_heap_common_t *heap = &ptls->gc_tls_common.heap;
small_arraylist_new(&heap->weak_refs, 0);
small_arraylist_new(&heap->live_tasks, 0);
for (int i = 0; i < JL_N_STACK_POOLS; i++)
small_arraylist_new(&heap->free_stacks[i], 0);
small_arraylist_new(&heap->mallocarrays, 0);
arraylist_new(&ptls->finalizers, 0);
// Initialize `lazily_freed_mtarraylist_buffers`
small_arraylist_new(&ptls->lazily_freed_mtarraylist_buffers, 0);
// Clear the malloc sz count
jl_atomic_store_relaxed(&ptls->gc_tls.malloc_sz_since_last_poll, 0);
// Create mutator
MMTk_Mutator mmtk_mutator = mmtk_bind_mutator((void *)ptls, ptls->tid);
// Copy the mutator to the thread local storage
memcpy(&ptls->gc_tls.mmtk_mutator, mmtk_mutator, sizeof(MMTkMutatorContext));
// Call post_bind to maintain a list of active mutators and to reclaim the old mutator (which is no longer needed)
mmtk_post_bind_mutator(&ptls->gc_tls.mmtk_mutator, mmtk_mutator);
memset(&ptls->gc_tls_common.gc_num, 0, sizeof(ptls->gc_tls_common.gc_num));
}
void jl_free_thread_gc_state(struct _jl_tls_states_t *ptls) {
mmtk_destroy_mutator(&ptls->gc_tls.mmtk_mutator);
}
JL_DLLEXPORT void jl_gc_set_max_memory(uint64_t max_mem) {
#ifdef _P32
max_mem = max_mem < MAX32HEAP ? max_mem : MAX32HEAP;
#endif
max_total_memory = max_mem;
}
JL_DLLEXPORT uint64_t jl_gc_get_max_memory(void)
{
// FIXME: We should return the max heap size set in MMTk
// when not using Julia's heap resizing heuristics
return max_total_memory;
}
STATIC_INLINE void maybe_collect(jl_ptls_t ptls)
{
// Just do a safe point for general maybe_collect
jl_gc_safepoint_(ptls);
}
// This is only used for malloc. We need to know if we need to do GC. However, keeping checking with MMTk (mmtk_gc_poll),
// is expensive. So we only check for every few allocations.
static inline void malloc_maybe_collect(jl_ptls_t ptls, size_t sz)
{
// We do not need to carefully maintain malloc_sz_since_last_poll. We just need to
// avoid using mmtk_gc_poll too frequently, and try to be precise on our heap usage
// as much as we can.
if (ptls->gc_tls.malloc_sz_since_last_poll > 4096) {
jl_atomic_store_relaxed(&ptls->gc_tls.malloc_sz_since_last_poll, 0);
mmtk_gc_poll(ptls);
} else {
size_t curr = jl_atomic_load_relaxed(&ptls->gc_tls.malloc_sz_since_last_poll);
jl_atomic_store_relaxed(&ptls->gc_tls.malloc_sz_since_last_poll, curr + sz);
jl_gc_safepoint_(ptls);
}
}
// This is called when the user calls for a GC with Gc.gc()
JL_DLLEXPORT void jl_gc_collect(jl_gc_collection_t collection) {
jl_task_t *ct = jl_current_task;
jl_ptls_t ptls = ct->ptls;
if (jl_atomic_load_acquire(&jl_gc_disable_counter)) {
size_t localbytes = jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.allocd) + gc_num.interval;
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.allocd, -(int64_t)gc_num.interval);
static_assert(sizeof(_Atomic(uint64_t)) == sizeof(gc_num.deferred_alloc), "");
jl_atomic_fetch_add_relaxed((_Atomic(uint64_t)*)&gc_num.deferred_alloc, localbytes);
return;
}
mmtk_handle_user_collection_request(ptls, collection);
}
// Based on jl_gc_collect from gc-stock.c
// called when stopping the thread in `mmtk_block_for_gc`
JL_DLLEXPORT void jl_gc_prepare_to_collect(void)
{
// FIXME: set to JL_GC_AUTO since we're calling it from mmtk
// maybe just remove this?
JL_PROBE_GC_BEGIN(JL_GC_AUTO);
jl_task_t *ct = jl_current_task;
jl_ptls_t ptls = ct->ptls;
if (jl_atomic_load_acquire(&jl_gc_disable_counter)) {
size_t localbytes = jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.allocd) + gc_num.interval;
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.allocd, -(int64_t)gc_num.interval);
static_assert(sizeof(_Atomic(uint64_t)) == sizeof(gc_num.deferred_alloc), "");
jl_atomic_fetch_add_relaxed((_Atomic(uint64_t)*)&gc_num.deferred_alloc, localbytes);
return;
}
int8_t old_state = jl_atomic_load_relaxed(&ptls->gc_state);
jl_atomic_store_release(&ptls->gc_state, JL_GC_STATE_WAITING);
// `jl_safepoint_start_gc()` makes sure only one thread can run the GC.
uint64_t t0 = jl_hrtime();
if (!jl_safepoint_start_gc(ct)) {
jl_gc_state_set(ptls, old_state, JL_GC_STATE_WAITING);
jl_safepoint_wait_thread_resume(ct); // block in thread-suspend now if requested, after clearing the gc_state
return;
}
JL_TIMING_SUSPEND_TASK(GC, ct);
JL_TIMING(GC, GC);
int last_errno = errno;
#ifdef _OS_WINDOWS_
DWORD last_error = GetLastError();
#endif
// Now we are ready to wait for other threads to hit the safepoint,
// we can do a few things that doesn't require synchronization.
//
// We must sync here with the tls_lock operations, so that we have a
// seq-cst order between these events now we know that either the new
// thread must run into our safepoint flag or we must observe the
// existence of the thread in the jl_n_threads count.
//
// TODO: concurrently queue objects
jl_fence();
gc_n_threads = jl_atomic_load_acquire(&jl_n_threads);
gc_all_tls_states = jl_atomic_load_relaxed(&jl_all_tls_states);
jl_gc_wait_for_the_world(gc_all_tls_states, gc_n_threads);
JL_PROBE_GC_STOP_THE_WORLD();
uint64_t t1 = jl_hrtime();
uint64_t duration = t1 - t0;
if (duration > gc_num.max_time_to_safepoint)
gc_num.max_time_to_safepoint = duration;
gc_num.time_to_safepoint = duration;
gc_num.total_time_to_safepoint += duration;
if (!jl_atomic_load_acquire(&jl_gc_disable_counter)) {
JL_LOCK_NOGC(&finalizers_lock); // all the other threads are stopped, so this does not make sense, right? otherwise, failing that, this seems like plausibly a deadlock
#ifndef __clang_gcanalyzer__
mmtk_block_thread_for_gc();
#endif
JL_UNLOCK_NOGC(&finalizers_lock);
}
gc_n_threads = 0;
gc_all_tls_states = NULL;
jl_safepoint_end_gc();
jl_gc_state_set(ptls, old_state, JL_GC_STATE_WAITING);
JL_PROBE_GC_END();
jl_safepoint_wait_thread_resume(ct); // block in thread-suspend now if requested, after clearing the gc_state
// Only disable finalizers on current thread
// Doing this on all threads is racy (it's impossible to check
// or wait for finalizers on other threads without dead lock).
if (!ptls->finalizers_inhibited && ptls->locks.len == 0) {
JL_TIMING(GC, GC_Finalizers);
run_finalizers(ct, 0);
}
JL_PROBE_GC_FINALIZER();
#ifdef _OS_WINDOWS_
SetLastError(last_error);
#endif
errno = last_errno;
}
// ========================================================================= //
// GC Statistics
// ========================================================================= //
JL_DLLEXPORT const char* jl_gc_active_impl(void) {
const char* mmtk_version = get_mmtk_version();
return mmtk_version;
}
int64_t last_gc_total_bytes = 0;
int64_t last_live_bytes = 0; // live_bytes at last collection
int64_t live_bytes = 0;
// FIXME: The functions combine_thread_gc_counts and reset_thread_gc_counts
// are currently nearly identical for mmtk and for stock. However, the stats
// are likely different (e.g., MMTk doesn't track the bytes allocated in the fastpath,
// but only when the slowpath is called). We might need to adapt these later so that
// the statistics are the same or as close as possible for each GC.
static void combine_thread_gc_counts(jl_gc_num_t *dest, int update_heap) JL_NOTSAFEPOINT
{
int gc_n_threads;
jl_ptls_t* gc_all_tls_states;
gc_n_threads = jl_atomic_load_acquire(&jl_n_threads);
gc_all_tls_states = jl_atomic_load_relaxed(&jl_all_tls_states);
for (int i = 0; i < gc_n_threads; i++) {
jl_ptls_t ptls = gc_all_tls_states[i];
if (ptls) {
dest->allocd += (jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.allocd) + gc_num.interval);
dest->malloc += jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.malloc);
dest->realloc += jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.realloc);
dest->poolalloc += jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.poolalloc);
dest->bigalloc += jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.bigalloc);
dest->freed += jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.free_acc);
if (update_heap) {
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.alloc_acc, 0);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.free_acc, 0);
}
}
}
}
void reset_thread_gc_counts(void) JL_NOTSAFEPOINT
{
int gc_n_threads;
jl_ptls_t* gc_all_tls_states;
gc_n_threads = jl_atomic_load_acquire(&jl_n_threads);
gc_all_tls_states = jl_atomic_load_relaxed(&jl_all_tls_states);
for (int i = 0; i < gc_n_threads; i++) {
jl_ptls_t ptls = gc_all_tls_states[i];
if (ptls != NULL) {
// don't reset `pool_live_bytes` here
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.allocd, -(int64_t)gc_num.interval);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.malloc, 0);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.realloc, 0);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.poolalloc, 0);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.bigalloc, 0);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.alloc_acc, 0);
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.free_acc, 0);
}
}
}
// Retrieves Julia's `GC_Num` (structure that stores GC statistics).
JL_DLLEXPORT jl_gc_num_t jl_gc_num(void) {
jl_gc_num_t num = gc_num;
combine_thread_gc_counts(&num, 0);
return num;
}
JL_DLLEXPORT int64_t jl_gc_diff_total_bytes(void) JL_NOTSAFEPOINT {
int64_t oldtb = last_gc_total_bytes;
int64_t newtb;
jl_gc_get_total_bytes(&newtb);
last_gc_total_bytes = newtb;
return newtb - oldtb;
}
JL_DLLEXPORT int64_t jl_gc_sync_total_bytes(int64_t offset) JL_NOTSAFEPOINT
{
int64_t oldtb = last_gc_total_bytes;
int64_t newtb;
jl_gc_get_total_bytes(&newtb);
last_gc_total_bytes = newtb - offset;
return newtb - oldtb;
}
JL_DLLEXPORT int64_t jl_gc_pool_live_bytes(void) {
return 0;
}
void jl_gc_count_allocd(size_t sz) JL_NOTSAFEPOINT
{
jl_ptls_t ptls = jl_current_task->ptls;
jl_atomic_store_relaxed(&ptls->gc_tls_common.gc_num.allocd,
jl_atomic_load_relaxed(&ptls->gc_tls_common.gc_num.allocd) + sz);
}
void jl_gc_count_freed(size_t sz) JL_NOTSAFEPOINT
{
}
int64_t inc_live_bytes(int64_t inc) JL_NOTSAFEPOINT
{
jl_timing_counter_inc(JL_TIMING_COUNTER_HeapSize, inc);
return live_bytes += inc;
}
void jl_gc_reset_alloc_count(void) JL_NOTSAFEPOINT
{
combine_thread_gc_counts(&gc_num, 0);
inc_live_bytes(gc_num.deferred_alloc + gc_num.allocd);
gc_num.allocd = 0;
gc_num.deferred_alloc = 0;
reset_thread_gc_counts();
}
JL_DLLEXPORT int64_t jl_gc_live_bytes(void) {
return last_live_bytes;
}
JL_DLLEXPORT void jl_gc_get_total_bytes(int64_t *bytes) JL_NOTSAFEPOINT
{
jl_gc_num_t num = gc_num;
combine_thread_gc_counts(&num, 0);
// Sync this logic with `base/util.jl:GC_Diff`
*bytes = (num.total_allocd + num.deferred_alloc + num.allocd);
}
// These are needed to collect MMTk statistics from a Julia program using ccall
JL_DLLEXPORT void (jl_mmtk_harness_begin)(void)
{
jl_ptls_t ptls = jl_current_task->ptls;
mmtk_harness_begin(ptls);
}
JL_DLLEXPORT void (jl_mmtk_harness_end)(void)
{
mmtk_harness_end();
}
// ========================================================================= //
// Root Processing, Object Scanning and Julia-specific sweeping
// ========================================================================= //
static void add_node_to_roots_buffer(RootsWorkClosure* closure, RootsWorkBuffer* buf, size_t* buf_len, void* root) {
if (root == NULL)
return;
buf->ptr[*buf_len] = root;
*buf_len += 1;
if (*buf_len >= buf->cap) {
RootsWorkBuffer new_buf = (closure->report_nodes_func)(buf->ptr, *buf_len, buf->cap, closure->data, true);
*buf = new_buf;
*buf_len = 0;
}
}
static void add_node_to_tpinned_roots_buffer(RootsWorkClosure* closure, RootsWorkBuffer* buf, size_t* buf_len, void* root) {
if (root == NULL)
return;
buf->ptr[*buf_len] = root;
*buf_len += 1;
if (*buf_len >= buf->cap) {
RootsWorkBuffer new_buf = (closure->report_tpinned_nodes_func)(buf->ptr, *buf_len, buf->cap, closure->data, true);
*buf = new_buf;
*buf_len = 0;
}
}
JL_DLLEXPORT void jl_gc_scan_vm_specific_roots(RootsWorkClosure* closure)
{
// Create a new buf
RootsWorkBuffer buf = (closure->report_nodes_func)((void**)0, 0, 0, closure->data, true);
size_t len = 0;
// add module
add_node_to_roots_buffer(closure, &buf, &len, jl_main_module);
// buildin values
add_node_to_roots_buffer(closure, &buf, &len, jl_an_empty_vec_any);
add_node_to_roots_buffer(closure, &buf, &len, jl_module_init_order);
for (size_t i = 0; i < jl_current_modules.size; i += 2) {
if (jl_current_modules.table[i + 1] != HT_NOTFOUND) {
add_node_to_roots_buffer(closure, &buf, &len, jl_current_modules.table[i]);
}
}
add_node_to_roots_buffer(closure, &buf, &len, jl_anytuple_type_type);
for (size_t i = 0; i < N_CALL_CACHE; i++) {
jl_typemap_entry_t *v = jl_atomic_load_relaxed(&call_cache[i]);
add_node_to_roots_buffer(closure, &buf, &len, v);
}
add_node_to_roots_buffer(closure, &buf, &len, _jl_debug_method_invalidation);
// constants
add_node_to_roots_buffer(closure, &buf, &len, jl_emptytuple_type);
add_node_to_roots_buffer(closure, &buf, &len, cmpswap_names);
// jl_global_roots_table must be transitively pinned
RootsWorkBuffer tpinned_buf = (closure->report_tpinned_nodes_func)((void**)0, 0, 0, closure->data, true);
size_t tpinned_len = 0;
add_node_to_tpinned_roots_buffer(closure, &tpinned_buf, &tpinned_len, jl_global_roots_list);
add_node_to_tpinned_roots_buffer(closure, &tpinned_buf, &tpinned_len, jl_global_roots_keyset);
// FIXME: transivitely pinning for now, should be removed after we add moving Immix
add_node_to_tpinned_roots_buffer(closure, &tpinned_buf, &tpinned_len, precompile_field_replace);
// Push the result of the work.
(closure->report_nodes_func)(buf.ptr, len, buf.cap, closure->data, false);
(closure->report_tpinned_nodes_func)(tpinned_buf.ptr, tpinned_len, tpinned_buf.cap, closure->data, false);
}
JL_DLLEXPORT void jl_gc_scan_julia_exc_obj(void* obj_raw, void* closure, ProcessSlotFn process_slot) {
jl_task_t *ta = (jl_task_t*)obj_raw;
if (ta->excstack) { // inlining label `excstack` from mark_loop
// the excstack should always be a heap object
assert(mmtk_object_is_managed_by_mmtk(ta->excstack));
process_slot(closure, &ta->excstack);
jl_excstack_t *excstack = ta->excstack;
size_t itr = ta->excstack->top;
size_t bt_index = 0;
size_t jlval_index = 0;
while (itr > 0) {
size_t bt_size = jl_excstack_bt_size(excstack, itr);
jl_bt_element_t *bt_data = jl_excstack_bt_data(excstack, itr);
for (; bt_index < bt_size; bt_index += jl_bt_entry_size(bt_data + bt_index)) {
jl_bt_element_t *bt_entry = bt_data + bt_index;
if (jl_bt_is_native(bt_entry))
continue;
// Found an extended backtrace entry: iterate over any
// GC-managed values inside.
size_t njlvals = jl_bt_num_jlvals(bt_entry);
while (jlval_index < njlvals) {
jl_value_t** new_obj_slot = &bt_entry[2 + jlval_index].jlvalue;
jlval_index += 1;
process_slot(closure, new_obj_slot);
}
jlval_index = 0;
}
jl_bt_element_t *stack_raw = (jl_bt_element_t *)(excstack+1);
jl_value_t** stack_obj_slot = &stack_raw[itr-1].jlvalue;
itr = jl_excstack_next(excstack, itr);
bt_index = 0;
jlval_index = 0;
process_slot(closure, stack_obj_slot);
}
}
}
// This is used in mmtk_sweep_malloced_memory and it is slightly different
// from jl_gc_free_memory from gc-stock.c as the stock GC updates the
// information in the global variable gc_heap_stats (which is specific to the stock GC)
static void jl_gc_free_memory(jl_genericmemory_t *m, int isaligned) JL_NOTSAFEPOINT
{
assert(jl_is_genericmemory(m));
assert(jl_genericmemory_how(m) == 1 || jl_genericmemory_how(m) == 2);
char *d = (char*)m->ptr;
size_t freed_bytes = memory_block_usable_size(d, isaligned);
assert(freed_bytes != 0);
if (isaligned)
jl_free_aligned(d);
else
free(d);
gc_num.freed += freed_bytes;
gc_num.freecall++;
}
JL_DLLEXPORT void jl_gc_mmtk_sweep_malloced_memory(void) JL_NOTSAFEPOINT
{
void* iter = mmtk_new_mutator_iterator();
jl_ptls_t ptls2 = (jl_ptls_t)mmtk_get_next_mutator_tls(iter);
while(ptls2 != NULL) {
size_t n = 0;
size_t l = ptls2->gc_tls_common.heap.mallocarrays.len;
void **lst = ptls2->gc_tls_common.heap.mallocarrays.items;
// filter without preserving order
while (n < l) {
jl_genericmemory_t *m = (jl_genericmemory_t*)((uintptr_t)lst[n] & ~1);
if (mmtk_is_live_object(m)) {
n++;
}
else {
int isaligned = (uintptr_t)lst[n] & 1;
jl_gc_free_memory(m, isaligned);
l--;
lst[n] = lst[l];
}
}
ptls2->gc_tls_common.heap.mallocarrays.len = l;
ptls2 = (jl_ptls_t)mmtk_get_next_mutator_tls(iter);
}
mmtk_close_mutator_iterator(iter);
}
#define jl_genericmemory_elsize(a) (((jl_datatype_t*)jl_typetagof(a))->layout->size)
// if data is inlined inside the genericmemory object --- to->ptr needs to be updated when copying the array
JL_DLLEXPORT void jl_gc_update_inlined_array(void* from, void* to) {
jl_value_t* jl_from = (jl_value_t*) from;
jl_value_t* jl_to = (jl_value_t*) to;
uintptr_t tag_to = (uintptr_t)jl_typeof(jl_to);
jl_datatype_t *vt = (jl_datatype_t*)tag_to;
if(vt->name == jl_genericmemory_typename) {
jl_genericmemory_t *a = (jl_genericmemory_t*)jl_from;
jl_genericmemory_t *b = (jl_genericmemory_t*)jl_to;
int how = jl_genericmemory_how(a);
if (how == 0 && mmtk_object_is_managed_by_mmtk(a->ptr)) { // a is inlined (a->ptr points into the mmtk object)
size_t offset_of_data = ((size_t)a->ptr - (size_t)a);
if (offset_of_data > 0) {
b->ptr = (void*)((size_t) b + offset_of_data);
}
}
}
}
// modified sweep_stack_pools from gc-stacks.c
JL_DLLEXPORT void jl_gc_mmtk_sweep_stack_pools(void)
{
// Stack sweeping algorithm:
// // deallocate stacks if we have too many sitting around unused
// for (stk in halfof(free_stacks))
// free_stack(stk, pool_sz);
// // then sweep the task stacks
// for (t in live_tasks)
// if (!gc-marked(t))
// stkbuf = t->stkbuf
// bufsz = t->bufsz
// if (stkbuf)
// push(free_stacks[sz], stkbuf)
assert(gc_n_threads);
for (int i = 0; i < jl_n_threads; i++) {
jl_ptls_t ptls2 = gc_all_tls_states[i];
if (ptls2 == NULL)
continue;
// free half of stacks that remain unused since last sweep
for (int p = 0; p < JL_N_STACK_POOLS; p++) {
small_arraylist_t *al = &ptls2->gc_tls_common.heap.free_stacks[p];
size_t n_to_free;
if (jl_atomic_load_relaxed(&ptls2->current_task) == NULL) {
n_to_free = al->len; // not alive yet or dead, so it does not need these anymore
}
else if (al->len > MIN_STACK_MAPPINGS_PER_POOL) {
n_to_free = al->len / 2;
if (n_to_free > (al->len - MIN_STACK_MAPPINGS_PER_POOL))
n_to_free = al->len - MIN_STACK_MAPPINGS_PER_POOL;
}
else {
n_to_free = 0;
}
for (int n = 0; n < n_to_free; n++) {
void *stk = small_arraylist_pop(al);
free_stack(stk, pool_sizes[p]);
}
if (jl_atomic_load_relaxed(&ptls2->current_task) == NULL) {
small_arraylist_free(al);
}
}
if (jl_atomic_load_relaxed(&ptls2->current_task) == NULL) {
small_arraylist_free(ptls2->gc_tls_common.heap.free_stacks);
}
small_arraylist_t *live_tasks = &ptls2->gc_tls_common.heap.live_tasks;
size_t n = 0;
size_t ndel = 0;
size_t l = live_tasks->len;
void **lst = live_tasks->items;
if (l == 0)
continue;
while (1) {
jl_task_t *t = (jl_task_t*)lst[n];
if (mmtk_is_live_object(t)) {
jl_task_t *maybe_forwarded = (jl_task_t*)mmtk_get_possibly_forwarded(t);
live_tasks->items[n] = maybe_forwarded;
t = maybe_forwarded;
assert(jl_is_task(t));
if (t->ctx.stkbuf == NULL)
ndel++; // jl_release_task_stack called
else
n++;
} else {
ndel++;
void *stkbuf = t->ctx.stkbuf;
size_t bufsz = t->ctx.bufsz;
if (stkbuf) {
t->ctx.stkbuf = NULL;
_jl_free_stack(ptls2, stkbuf, bufsz);
}
#ifdef _COMPILER_TSAN_ENABLED_
if (t->ctx.tsan_state) {
__tsan_destroy_fiber(t->ctx.tsan_state);
t->ctx.tsan_state = NULL;
}
#endif
}
if (n >= l - ndel)
break;
void *tmp = lst[n];
lst[n] = lst[n + ndel];
lst[n + ndel] = tmp;
}
live_tasks->len -= ndel;
}
}
JL_DLLEXPORT void jl_gc_sweep_stack_pools_and_mtarraylist_buffers(jl_ptls_t ptls) JL_NOTSAFEPOINT
{
jl_gc_mmtk_sweep_stack_pools();
sweep_mtarraylist_buffers();
}
JL_DLLEXPORT void* jl_gc_get_stackbase(int16_t tid) {
assert(tid >= 0);
jl_ptls_t ptls2 = jl_all_tls_states[tid];
return ptls2->stackbase;
}
JL_DLLEXPORT void jl_gc_update_stats(uint64_t inc, size_t mmtk_live_bytes, bool is_nursery_gc) {
gc_num.total_time += inc;
gc_num.pause += 1;
gc_num.full_sweep += !(is_nursery_gc);
gc_num.total_allocd += gc_num.allocd;
gc_num.allocd = 0;
live_bytes = mmtk_live_bytes;
}
#define jl_genericmemory_data_owner_field_addr(a) ((jl_value_t**)((jl_genericmemory_t*)(a) + 1))
JL_DLLEXPORT void* jl_gc_get_owner_address_to_mmtk(void* m) {
return (void*)jl_genericmemory_data_owner_field_addr(m);
}
// same as jl_genericmemory_how but with JL_DLLEXPORT
// we should probably inline this in Rust
JL_DLLEXPORT size_t jl_gc_genericmemory_how(void *arg) JL_NOTSAFEPOINT
{
jl_genericmemory_t* m = (jl_genericmemory_t*)arg;
if (m->ptr == (void*)((char*)m + 16)) // JL_SMALL_BYTE_ALIGNMENT (from julia_internal.h)
return 0;
jl_value_t *owner = jl_genericmemory_data_owner_field(m);
if (owner == (jl_value_t*)m)
return 1;
if (owner == NULL)
return 2;
return 3;
}
// ========================================================================= //
// Weak References and Finalizers
// ========================================================================= //
JL_DLLEXPORT jl_weakref_t *jl_gc_new_weakref_th(jl_ptls_t ptls, jl_value_t *value)
{
jl_weakref_t *wr = (jl_weakref_t*)jl_gc_alloc(ptls, sizeof(void*), jl_weakref_type);
wr->value = value; // NOTE: wb not needed here
mmtk_add_weak_candidate(wr);
return wr;
}
JL_DLLEXPORT void* jl_gc_get_thread_finalizer_list(void* ptls_raw) {
jl_ptls_t ptls = (jl_ptls_t) ptls_raw;
return (void*)&ptls->finalizers;
}
JL_DLLEXPORT void* jl_gc_get_to_finalize_list(void) {
return (void*)&to_finalize;
}
JL_DLLEXPORT void* jl_gc_get_marked_finalizers_list(void) {
return (void*)&finalizer_list_marked;
}
JL_DLLEXPORT int* jl_gc_get_have_pending_finalizers(void) {
return (int*)&jl_gc_have_pending_finalizers;
}
// ========================================================================= //
// Allocation
// ========================================================================= //
#define MMTK_DEFAULT_IMMIX_ALLOCATOR (0)
#define MMTK_IMMORTAL_BUMP_ALLOCATOR (0)
int jl_gc_classify_pools(size_t sz, int *osize)
{
if (sz > GC_MAX_SZCLASS)
return -1; // call big alloc function
size_t allocsz = sz + sizeof(jl_taggedvalue_t);
*osize = LLT_ALIGN(allocsz, 16);
return 0; // use MMTk's fastpath logic
}
#define MMTK_MIN_ALIGNMENT 4
// MMTk assumes allocation size is aligned to min alignment.
STATIC_INLINE size_t mmtk_align_alloc_sz(size_t sz) JL_NOTSAFEPOINT
{
return (sz + MMTK_MIN_ALIGNMENT - 1) & ~(MMTK_MIN_ALIGNMENT - 1);
}
STATIC_INLINE void* bump_alloc_fast(MMTkMutatorContext* mutator, uintptr_t* cursor, uintptr_t limit, size_t size, size_t align, size_t offset, int allocator) {
intptr_t delta = (-offset - *cursor) & (align - 1);
uintptr_t result = *cursor + (uintptr_t)delta;
if (__unlikely(result + size > limit)) {
return (void*) mmtk_alloc(mutator, size, align, offset, allocator);
} else{
*cursor = result + size;
return (void*)result;
}
}
STATIC_INLINE void* mmtk_immix_alloc_fast(MMTkMutatorContext* mutator, size_t size, size_t align, size_t offset) {
ImmixAllocator* allocator = &mutator->allocators.immix[MMTK_DEFAULT_IMMIX_ALLOCATOR];
return bump_alloc_fast(mutator, (uintptr_t*)&allocator->cursor, (intptr_t)allocator->limit, size, align, offset, 0);
}
inline void mmtk_immix_post_alloc_slow(MMTkMutatorContext* mutator, void* obj, size_t size) {
mmtk_post_alloc(mutator, obj, size, 0);
}
STATIC_INLINE void mmtk_immix_post_alloc_fast(MMTkMutatorContext* mutator, void* obj, size_t size) {
// FIXME: for now, we do nothing
// but when supporting moving, this is where we set the valid object (VO) bit
}
STATIC_INLINE void* mmtk_immortal_alloc_fast(MMTkMutatorContext* mutator, size_t size, size_t align, size_t offset) {
BumpAllocator* allocator = &mutator->allocators.bump_pointer[MMTK_IMMORTAL_BUMP_ALLOCATOR];
return bump_alloc_fast(mutator, (uintptr_t*)&allocator->cursor, (uintptr_t)allocator->limit, size, align, offset, 1);
}
inline void mmtk_set_side_metadata(const void* side_metadata_base, void* obj) {
intptr_t addr = (intptr_t) obj;
uint8_t* meta_addr = (uint8_t*) side_metadata_base + (addr >> 6);
intptr_t shift = (addr >> 3) & 0b111;
while(1) {
uint8_t old_val = *meta_addr;
uint8_t new_val = old_val | (1 << shift);
if (jl_atomic_cmpswap((_Atomic(uint8_t)*)meta_addr, &old_val, new_val)) {
break;
}
}
}
STATIC_INLINE void mmtk_immortal_post_alloc_fast(MMTkMutatorContext* mutator, void* obj, size_t size) {
if (MMTK_NEEDS_WRITE_BARRIER == MMTK_OBJECT_BARRIER) {
mmtk_set_side_metadata(MMTK_SIDE_LOG_BIT_BASE_ADDRESS, obj);
}
}
JL_DLLEXPORT jl_value_t *jl_mmtk_gc_alloc_default(jl_ptls_t ptls, int osize, size_t align, void *ty)
{
// safepoint
jl_gc_safepoint_(ptls);
jl_value_t *v;
if ((uintptr_t)ty != jl_buff_tag) {
// v needs to be 16 byte aligned, therefore v_tagged needs to be offset accordingly to consider the size of header
jl_taggedvalue_t *v_tagged = (jl_taggedvalue_t *)mmtk_immix_alloc_fast(&ptls->gc_tls.mmtk_mutator, LLT_ALIGN(osize, align), align, sizeof(jl_taggedvalue_t));
v = jl_valueof(v_tagged);
mmtk_immix_post_alloc_fast(&ptls->gc_tls.mmtk_mutator, v, LLT_ALIGN(osize, align));
} else {
// allocating an extra word to store the size of buffer objects
jl_taggedvalue_t *v_tagged = (jl_taggedvalue_t *)mmtk_immix_alloc_fast(&ptls->gc_tls.mmtk_mutator, LLT_ALIGN(osize+sizeof(jl_taggedvalue_t), align), align, 0);
jl_value_t* v_tagged_aligned = ((jl_value_t*)((char*)(v_tagged) + sizeof(jl_taggedvalue_t)));
v = jl_valueof(v_tagged_aligned);
mmtk_store_obj_size_c(v, LLT_ALIGN(osize+sizeof(jl_taggedvalue_t), align));
mmtk_immix_post_alloc_fast(&ptls->gc_tls.mmtk_mutator, v, LLT_ALIGN(osize+sizeof(jl_taggedvalue_t), align));
}
ptls->gc_tls_common.gc_num.allocd += osize;
ptls->gc_tls_common.gc_num.poolalloc++;
return v;
}
JL_DLLEXPORT jl_value_t *jl_mmtk_gc_alloc_big(jl_ptls_t ptls, size_t sz)
{
// safepoint
jl_gc_safepoint_(ptls);
size_t offs = offsetof(bigval_t, header);
assert(sz >= sizeof(jl_taggedvalue_t) && "sz must include tag");
static_assert(offsetof(bigval_t, header) >= sizeof(void*), "Empty bigval header?");
static_assert(sizeof(bigval_t) % JL_HEAP_ALIGNMENT == 0, "");
size_t allocsz = LLT_ALIGN(sz + offs, JL_CACHE_BYTE_ALIGNMENT);
if (allocsz < sz) { // overflow in adding offs, size was "negative"
assert(0 && "Error when allocating big object");
jl_throw(jl_memory_exception);
}
bigval_t *v = (bigval_t*)mmtk_alloc_large(&ptls->gc_tls.mmtk_mutator, allocsz, JL_CACHE_BYTE_ALIGNMENT, 0, 2);
if (v == NULL) {
assert(0 && "Allocation failed");
jl_throw(jl_memory_exception);
}
v->sz = allocsz;
ptls->gc_tls_common.gc_num.allocd += allocsz;
ptls->gc_tls_common.gc_num.bigalloc++;
jl_value_t *result = jl_valueof(&v->header);
mmtk_post_alloc(&ptls->gc_tls.mmtk_mutator, result, allocsz, 2);
return result;
}
// Instrumented version of jl_gc_small_alloc_inner, called into by LLVM-generated code.
JL_DLLEXPORT jl_value_t *jl_gc_small_alloc(jl_ptls_t ptls, int offset, int osize, jl_value_t* type)
{
assert(jl_atomic_load_relaxed(&ptls->gc_state) == 0);
jl_value_t *val = jl_mmtk_gc_alloc_default(ptls, osize, 16, NULL);
maybe_record_alloc_to_profile(val, osize, (jl_datatype_t*)type);
return val;
}
// Instrumented version of jl_gc_big_alloc_inner, called into by LLVM-generated code.
JL_DLLEXPORT jl_value_t *jl_gc_big_alloc(jl_ptls_t ptls, size_t sz, jl_value_t *type)
{
// TODO: assertion needed here?
assert(jl_atomic_load_relaxed(&ptls->gc_state) == 0);
jl_value_t *val = jl_mmtk_gc_alloc_big(ptls, sz);
maybe_record_alloc_to_profile(val, sz, (jl_datatype_t*)type);
return val;
}
inline jl_value_t *jl_gc_alloc_(jl_ptls_t ptls, size_t sz, void *ty)
{
jl_value_t *v;
const size_t allocsz = sz + sizeof(jl_taggedvalue_t);
if (sz <= GC_MAX_SZCLASS) {
v = jl_mmtk_gc_alloc_default(ptls, allocsz, 16, ty);
}
else {
if (allocsz < sz) // overflow in adding offs, size was "negative"
jl_throw(jl_memory_exception);
v = jl_mmtk_gc_alloc_big(ptls, allocsz);
}
jl_set_typeof(v, ty);
maybe_record_alloc_to_profile(v, sz, (jl_datatype_t*)ty);
return v;
}
// allocation wrappers that track allocation and let collection run
JL_DLLEXPORT void *jl_gc_counted_malloc(size_t sz)
{
jl_gcframe_t **pgcstack = jl_get_pgcstack();
jl_task_t *ct = jl_current_task;
void *data = malloc(sz);
if (data != NULL && pgcstack != NULL && ct->world_age) {
jl_ptls_t ptls = ct->ptls;
malloc_maybe_collect(ptls, sz);
jl_atomic_fetch_add_relaxed(&JULIA_MALLOC_BYTES, sz);
}
return data;
}
JL_DLLEXPORT void *jl_gc_counted_calloc(size_t nm, size_t sz)
{
jl_gcframe_t **pgcstack = jl_get_pgcstack();
jl_task_t *ct = jl_current_task;
void *data = calloc(nm, sz);
if (data != NULL && pgcstack != NULL && ct->world_age) {
jl_ptls_t ptls = ct->ptls;