-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathoptimize.jl
864 lines (805 loc) · 33.2 KB
/
optimize.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
# This file is a part of Julia. License is MIT: https://julialang.org/license
#############
# constants #
#############
# The slot has uses that are not statically dominated by any assignment
# This is implied by `SLOT_USEDUNDEF`.
# If this is not set, all the uses are (statically) dominated by the defs.
# In particular, if a slot has `AssignedOnce && !StaticUndef`, it is an SSA.
const SLOT_STATICUNDEF = 1 # slot might be used before it is defined (structurally)
const SLOT_ASSIGNEDONCE = 16 # slot is assigned to only once
const SLOT_USEDUNDEF = 32 # slot has uses that might raise UndefVarError
# const SLOT_CALLED = 64
# NOTE make sure to sync the flag definitions below with julia.h and `jl_code_info_set_ir` in method.c
const IR_FLAG_NULL = 0x00
# This statement is marked as @inbounds by user.
# Ff replaced by inlining, any contained boundschecks may be removed.
const IR_FLAG_INBOUNDS = 0x01 << 0
# This statement is marked as @inline by user
const IR_FLAG_INLINE = 0x01 << 1
# This statement is marked as @noinline by user
const IR_FLAG_NOINLINE = 0x01 << 2
const IR_FLAG_THROW_BLOCK = 0x01 << 3
# This statement may be removed if its result is unused. In particular it must
# thus be both pure and effect free.
const IR_FLAG_EFFECT_FREE = 0x01 << 4
const TOP_TUPLE = GlobalRef(Core, :tuple)
#####################
# OptimizationState #
#####################
struct EdgeTracker
edges::Vector{Any}
valid_worlds::RefValue{WorldRange}
EdgeTracker(edges::Vector{Any}, range::WorldRange) =
new(edges, RefValue{WorldRange}(range))
end
EdgeTracker() = EdgeTracker(Any[], 0:typemax(UInt))
intersect!(et::EdgeTracker, range::WorldRange) =
et.valid_worlds[] = intersect(et.valid_worlds[], range)
push!(et::EdgeTracker, mi::MethodInstance) = push!(et.edges, mi)
function push!(et::EdgeTracker, ci::CodeInstance)
intersect!(et, WorldRange(min_world(li), max_world(li)))
push!(et, ci.def)
end
struct InliningState{S <: Union{EdgeTracker, Nothing}, MICache, I<:AbstractInterpreter}
params::OptimizationParams
et::S
mi_cache::MICache # TODO move this to `OptimizationState` (as used by EscapeAnalysis as well)
interp::I
end
function inlining_policy(interp::AbstractInterpreter, @nospecialize(src), stmt_flag::UInt8,
mi::MethodInstance, argtypes::Vector{Any})
if isa(src, CodeInfo) || isa(src, Vector{UInt8})
src_inferred = ccall(:jl_ir_flag_inferred, Bool, (Any,), src)
src_inlineable = is_stmt_inline(stmt_flag) || ccall(:jl_ir_flag_inlineable, Bool, (Any,), src)
return src_inferred && src_inlineable ? src : nothing
elseif src === nothing && is_stmt_inline(stmt_flag)
# if this statement is forced to be inlined, make an additional effort to find the
# inferred source in the local cache
# we still won't find a source for recursive call because the "single-level" inlining
# seems to be more trouble and complex than it's worth
inf_result = cache_lookup(mi, argtypes, get_inference_cache(interp))
inf_result === nothing && return nothing
src = inf_result.src
if isa(src, CodeInfo)
src_inferred = ccall(:jl_ir_flag_inferred, Bool, (Any,), src)
return src_inferred ? src : nothing
else
return nothing
end
end
return nothing
end
include("compiler/ssair/driver.jl")
mutable struct OptimizationState
linfo::MethodInstance
src::CodeInfo
ir::Union{Nothing, IRCode}
stmt_info::Vector{Any}
mod::Module
sptypes::Vector{Any} # static parameters
slottypes::Vector{Any}
inlining::InliningState
function OptimizationState(frame::InferenceState, params::OptimizationParams, interp::AbstractInterpreter)
s_edges = frame.stmt_edges[1]::Vector{Any}
inlining = InliningState(params,
EdgeTracker(s_edges, frame.valid_worlds),
WorldView(code_cache(interp), frame.world),
interp)
return new(frame.linfo,
frame.src, nothing, frame.stmt_info, frame.mod,
frame.sptypes, frame.slottypes, inlining)
end
function OptimizationState(linfo::MethodInstance, src::CodeInfo, params::OptimizationParams, interp::AbstractInterpreter)
# prepare src for running optimization passes
# if it isn't already
nssavalues = src.ssavaluetypes
if nssavalues isa Int
src.ssavaluetypes = Any[ Any for i = 1:nssavalues ]
else
nssavalues = length(src.ssavaluetypes::Vector{Any})
end
nslots = length(src.slotflags)
slottypes = src.slottypes
if slottypes === nothing
slottypes = Any[ Any for i = 1:nslots ]
end
stmt_info = Any[nothing for i = 1:nssavalues]
# cache some useful state computations
def = linfo.def
mod = isa(def, Method) ? def.module : def
# Allow using the global MI cache, but don't track edges.
# This method is mostly used for unit testing the optimizer
inlining = InliningState(params,
nothing,
WorldView(code_cache(interp), get_world_counter()),
interp)
return new(linfo,
src, nothing, stmt_info, mod,
sptypes_from_meth_instance(linfo), slottypes, inlining)
end
end
function OptimizationState(linfo::MethodInstance, params::OptimizationParams, interp::AbstractInterpreter)
src = retrieve_code_info(linfo)
src === nothing && return nothing
return OptimizationState(linfo, src, params, interp)
end
function ir_to_codeinf!(opt::OptimizationState)
(; linfo, src) = opt
optdef = linfo.def
replace_code_newstyle!(src, opt.ir::IRCode, isa(optdef, Method) ? Int(optdef.nargs) : 0)
opt.ir = nothing
widen_all_consts!(src)
src.inferred = true
# finish updating the result struct
validate_code_in_debug_mode(linfo, src, "optimized")
return src
end
#########
# logic #
#########
_topmod(sv::OptimizationState) = _topmod(sv.mod)
is_stmt_inline(stmt_flag::UInt8) = stmt_flag & IR_FLAG_INLINE ≠ 0
is_stmt_noinline(stmt_flag::UInt8) = stmt_flag & IR_FLAG_NOINLINE ≠ 0
is_stmt_throw_block(stmt_flag::UInt8) = stmt_flag & IR_FLAG_THROW_BLOCK ≠ 0
# These affect control flow within the function (so may not be removed
# if there is no usage within the function), but don't affect the purity
# of the function as a whole.
function stmt_affects_purity(@nospecialize(stmt), ir)
if isa(stmt, GotoNode) || isa(stmt, ReturnNode)
return false
end
if isa(stmt, GotoIfNot)
t = argextype(stmt.cond, ir)
return !(t ⊑ Bool)
end
if isa(stmt, Expr)
return stmt.head !== :loopinfo && stmt.head !== :enter
end
return true
end
"""
stmt_effect_free(stmt, rt, src::Union{IRCode,IncrementalCompact})
Determine whether a `stmt` is "side-effect-free", i.e. may be removed if it has no uses.
"""
function stmt_effect_free(@nospecialize(stmt), @nospecialize(rt), src::Union{IRCode,IncrementalCompact})
isa(stmt, PiNode) && return true
isa(stmt, PhiNode) && return true
isa(stmt, ReturnNode) && return false
isa(stmt, GotoNode) && return false
isa(stmt, GotoIfNot) && return false
isa(stmt, Slot) && return false # Slots shouldn't occur in the IR at this point, but let's be defensive here
isa(stmt, GlobalRef) && return isdefined(stmt.mod, stmt.name)
if isa(stmt, Expr)
(; head, args) = stmt
if head === :static_parameter
etyp = (isa(src, IRCode) ? src.sptypes : src.ir.sptypes)[args[1]::Int]
# if we aren't certain enough about the type, it might be an UndefVarError at runtime
return isa(etyp, Const)
end
if head === :call
f = argextype(args[1], src)
f = singleton_type(f)
f === nothing && return false
is_return_type(f) && return true
if isa(f, IntrinsicFunction)
intrinsic_effect_free_if_nothrow(f) || return false
return intrinsic_nothrow(f,
Any[argextype(args[i], src) for i = 2:length(args)])
end
contains_is(_PURE_BUILTINS, f) && return true
# `get_binding_type` sets the type to Any if the binding doesn't exist yet
if f === Core.get_binding_type
length(args) == 3 || return false
M, s = argextype(args[2], src), argextype(args[3], src)
return get_binding_type_effect_free(M, s)
end
contains_is(_EFFECT_FREE_BUILTINS, f) || return false
rt === Bottom && return false
return _builtin_nothrow(f, Any[argextype(args[i], src) for i = 2:length(args)], rt)
elseif head === :new
typ = argextype(args[1], src)
# `Expr(:new)` of unknown type could raise arbitrary TypeError.
typ, isexact = instanceof_tfunc(typ)
isexact || return false
isconcretedispatch(typ) || return false
typ = typ::DataType
fieldcount(typ) >= length(args) - 1 || return false
for fld_idx in 1:(length(args) - 1)
eT = argextype(args[fld_idx + 1], src)
fT = fieldtype(typ, fld_idx)
eT ⊑ fT || return false
end
return true
elseif head === :foreigncall
return foreigncall_effect_free(stmt, src)
elseif head === :new_opaque_closure
length(args) < 4 && return false
typ = argextype(args[1], src)
typ, isexact = instanceof_tfunc(typ)
isexact || return false
typ ⊑ Tuple || return false
rt_lb = argextype(args[2], src)
rt_ub = argextype(args[3], src)
src = argextype(args[4], src)
if !(rt_lb ⊑ Type && rt_ub ⊑ Type && src ⊑ Method)
return false
end
return true
elseif head === :isdefined || head === :the_exception || head === :copyast || head === :inbounds || head === :boundscheck
return true
else
# e.g. :loopinfo
return false
end
end
return true
end
function foreigncall_effect_free(stmt::Expr, src::Union{IRCode,IncrementalCompact})
args = stmt.args
name = args[1]
isa(name, QuoteNode) && (name = name.value)
isa(name, Symbol) || return false
ndims = alloc_array_ndims(name)
if ndims !== nothing
if ndims == 0
return new_array_no_throw(args, src)
else
return alloc_array_no_throw(args, ndims, src)
end
end
return false
end
function alloc_array_ndims(name::Symbol)
if name === :jl_alloc_array_1d
return 1
elseif name === :jl_alloc_array_2d
return 2
elseif name === :jl_alloc_array_3d
return 3
elseif name === :jl_new_array
return 0
end
return nothing
end
const FOREIGNCALL_ARG_START = 6
function alloc_array_no_throw(args::Vector{Any}, ndims::Int, src::Union{IRCode,IncrementalCompact})
length(args) ≥ ndims+FOREIGNCALL_ARG_START || return false
atype = instanceof_tfunc(argextype(args[FOREIGNCALL_ARG_START], src))[1]
dims = Csize_t[]
for i in 1:ndims
dim = argextype(args[i+FOREIGNCALL_ARG_START], src)
isa(dim, Const) || return false
dimval = dim.val
isa(dimval, Int) || return false
push!(dims, reinterpret(Csize_t, dimval))
end
return _new_array_no_throw(atype, ndims, dims)
end
function new_array_no_throw(args::Vector{Any}, src::Union{IRCode,IncrementalCompact})
length(args) ≥ FOREIGNCALL_ARG_START+1 || return false
atype = instanceof_tfunc(argextype(args[FOREIGNCALL_ARG_START], src))[1]
dims = argextype(args[FOREIGNCALL_ARG_START+1], src)
isa(dims, Const) || return dims === Tuple{}
dimsval = dims.val
isa(dimsval, Tuple{Vararg{Int}}) || return false
ndims = nfields(dimsval)
isa(ndims, Int) || return false
dims = Csize_t[reinterpret(Csize_t, dimval) for dimval in dimsval]
return _new_array_no_throw(atype, ndims, dims)
end
function _new_array_no_throw(@nospecialize(atype), ndims::Int, dims::Vector{Csize_t})
isa(atype, DataType) || return false
eltype = atype.parameters[1]
iskindtype(typeof(eltype)) || return false
elsz = aligned_sizeof(eltype)
return ccall(:jl_array_validate_dims, Cint,
(Ptr{Csize_t}, Ptr{Csize_t}, UInt32, Ptr{Csize_t}, Csize_t),
#=nel=#RefValue{Csize_t}(), #=tot=#RefValue{Csize_t}(), ndims, dims, elsz) == 0
end
"""
argextype(x, src::Union{IRCode,IncrementalCompact}) -> t
argextype(x, src::CodeInfo, sptypes::Vector{Any}) -> t
Return the type of value `x` in the context of inferred source `src`.
Note that `t` might be an extended lattice element.
Use `widenconst(t)` to get the native Julia type of `x`.
"""
argextype(@nospecialize(x), ir::IRCode, sptypes::Vector{Any} = ir.sptypes) =
argextype(x, ir, sptypes, ir.argtypes)
function argextype(@nospecialize(x), compact::IncrementalCompact, sptypes::Vector{Any} = compact.ir.sptypes)
isa(x, AnySSAValue) && return types(compact)[x]
return argextype(x, compact, sptypes, compact.ir.argtypes)
end
argextype(@nospecialize(x), src::CodeInfo, sptypes::Vector{Any}) = argextype(x, src, sptypes, src.slottypes::Vector{Any})
function argextype(
@nospecialize(x), src::Union{IRCode,IncrementalCompact,CodeInfo},
sptypes::Vector{Any}, slottypes::Vector{Any})
if isa(x, Expr)
if x.head === :static_parameter
return sptypes[x.args[1]::Int]
elseif x.head === :boundscheck
return Bool
elseif x.head === :copyast
return argextype(x.args[1], src, sptypes, slottypes)
end
@assert false "argextype only works on argument-position values"
elseif isa(x, SlotNumber)
return slottypes[x.id]
elseif isa(x, TypedSlot)
return x.typ
elseif isa(x, SSAValue)
return abstract_eval_ssavalue(x, src)
elseif isa(x, Argument)
return slottypes[x.n]
elseif isa(x, QuoteNode)
return Const(x.value)
elseif isa(x, GlobalRef)
return abstract_eval_global(x.mod, x.name)
elseif isa(x, PhiNode)
return Any
elseif isa(x, PiNode)
return x.typ
else
return Const(x)
end
end
abstract_eval_ssavalue(s::SSAValue, src::Union{IRCode,IncrementalCompact}) = types(src)[s]
struct ConstAPI
val
ConstAPI(@nospecialize val) = new(val)
end
"""
finish(interp::AbstractInterpreter, opt::OptimizationState,
params::OptimizationParams, ir::IRCode, caller::InferenceResult) -> analyzed::Union{Nothing,ConstAPI}
Post process information derived by Julia-level optimizations for later uses:
- computes "purity", i.e. side-effect-freeness
- computes inlining cost
In a case when the purity is proven, `finish` can return `ConstAPI` object wrapping the constant
value so that the runtime system will use the constant calling convention for the method calls.
"""
function finish(interp::AbstractInterpreter, opt::OptimizationState,
params::OptimizationParams, ir::IRCode, caller::InferenceResult)
(; src, linfo) = opt
(; def, specTypes) = linfo
analyzed = nothing # `ConstAPI` if this call can use constant calling convention
force_noinline = _any(@nospecialize(x) -> isexpr(x, :meta) && x.args[1] === :noinline, ir.meta)
# compute inlining and other related optimizations
result = caller.result
@assert !(result isa LimitedAccuracy)
result = isa(result, InterConditional) ? widenconditional(result) : result
if (isa(result, Const) || isconstType(result))
proven_pure = false
# must be proven pure to use constant calling convention;
# otherwise we might skip throwing errors (issue #20704)
# TODO: Improve this analysis; if a function is marked @pure we should really
# only care about certain errors (e.g. method errors and type errors).
if length(ir.stmts) < 15
proven_pure = true
for i in 1:length(ir.stmts)
node = ir.stmts[i]
stmt = node[:inst]
if stmt_affects_purity(stmt, ir) && !stmt_effect_free(stmt, node[:type], ir)
proven_pure = false
break
end
end
if proven_pure
for fl in src.slotflags
if (fl & SLOT_USEDUNDEF) != 0
proven_pure = false
break
end
end
end
end
if proven_pure
# use constant calling convention
# Do not emit `jl_fptr_const_return` if coverage is enabled
# so that we don't need to add coverage support
# to the `jl_call_method_internal` fast path
# Still set pure flag to make sure `inference` tests pass
# and to possibly enable more optimization in the future
src.pure = true
if isa(result, Const)
val = result.val
if is_inlineable_constant(val)
analyzed = ConstAPI(val)
end
else
@assert isconstType(result)
analyzed = ConstAPI(result.parameters[1])
end
force_noinline || (src.inlineable = true)
end
end
opt.ir = ir
# determine and cache inlineability
union_penalties = false
if !force_noinline
sig = unwrap_unionall(specTypes)
if isa(sig, DataType) && sig.name === Tuple.name
for P in sig.parameters
P = unwrap_unionall(P)
if isa(P, Union)
union_penalties = true
break
end
end
else
force_noinline = true
end
if !src.inlineable && result === Bottom
force_noinline = true
end
end
if force_noinline
src.inlineable = false
elseif isa(def, Method)
if src.inlineable && isdispatchtuple(specTypes)
# obey @inline declaration if a dispatch barrier would not help
else
# compute the cost (size) of inlining this code
cost_threshold = default = params.inline_cost_threshold
if result ⊑ Tuple && !isconcretetype(widenconst(result))
cost_threshold += params.inline_tupleret_bonus
end
# if the method is declared as `@inline`, increase the cost threshold 20x
if src.inlineable
cost_threshold += 19*default
end
# a few functions get special treatment
if def.module === _topmod(def.module)
name = def.name
if name === :iterate || name === :unsafe_convert || name === :cconvert
cost_threshold += 4*default
end
end
src.inlineable = inline_worthy(ir, params, union_penalties, cost_threshold)
end
end
return analyzed
end
# run the optimization work
function optimize(interp::AbstractInterpreter, opt::OptimizationState,
params::OptimizationParams, caller::InferenceResult)
@timeit "optimizer" ir = run_passes(opt.src, opt, caller)
return finish(interp, opt, params, ir, caller)
end
using .EscapeAnalysis
import .EscapeAnalysis: EscapeState, ArgEscapeCache, is_ipo_profitable
"""
cache_escapes!(caller::InferenceResult, estate::EscapeState)
Transforms escape information of call arguments of `caller`,
and then caches it into a global cache for later interprocedural propagation.
"""
cache_escapes!(caller::InferenceResult, estate::EscapeState) =
caller.argescapes = ArgEscapeCache(estate)
function ipo_escape_cache(mi_cache::MICache) where MICache
return function (linfo::Union{InferenceResult,MethodInstance})
if isa(linfo, InferenceResult)
argescapes = linfo.argescapes
else
codeinst = get(mi_cache, linfo, nothing)
isa(codeinst, CodeInstance) || return nothing
argescapes = codeinst.argescapes
end
return argescapes !== nothing ? argescapes::ArgEscapeCache : nothing
end
end
null_escape_cache(linfo::Union{InferenceResult,MethodInstance}) = nothing
function run_passes(ci::CodeInfo, sv::OptimizationState, caller::InferenceResult)
@timeit "convert" ir = convert_to_ircode(ci, sv)
@timeit "slot2reg" ir = slot2reg(ir, ci, sv)
# TODO: Domsorting can produce an updated domtree - no need to recompute here
@timeit "compact 1" ir = compact!(ir)
@timeit "Inlining" ir = ssa_inlining_pass!(ir, ir.linetable, sv.inlining, ci.propagate_inbounds)
# @timeit "verify 2" verify_ir(ir)
@timeit "compact 2" ir = compact!(ir)
@timeit "SROA" ir = sroa_pass!(ir)
@timeit "ADCE" ir = adce_pass!(ir)
@timeit "type lift" ir = type_lift_pass!(ir)
@timeit "compact 3" ir = compact!(ir)
if JLOptions().debug_level == 2
@timeit "verify 3" (verify_ir(ir); verify_linetable(ir.linetable))
end
return ir
end
function convert_to_ircode(ci::CodeInfo, sv::OptimizationState)
code = copy_exprargs(ci.code)
coverage = coverage_enabled(sv.mod)
# Go through and add an unreachable node after every
# Union{} call. Then reindex labels.
idx = 1
oldidx = 1
changemap = fill(0, length(code))
labelmap = coverage ? fill(0, length(code)) : changemap
prevloc = zero(eltype(ci.codelocs))
stmtinfo = sv.stmt_info
codelocs = ci.codelocs
ssavaluetypes = ci.ssavaluetypes::Vector{Any}
ssaflags = ci.ssaflags
while idx <= length(code)
codeloc = codelocs[idx]
if coverage && codeloc != prevloc && codeloc != 0
# insert a side-effect instruction before the current instruction in the same basic block
insert!(code, idx, Expr(:code_coverage_effect))
insert!(codelocs, idx, codeloc)
insert!(ssavaluetypes, idx, Nothing)
insert!(stmtinfo, idx, nothing)
insert!(ssaflags, idx, IR_FLAG_NULL)
changemap[oldidx] += 1
if oldidx < length(labelmap)
labelmap[oldidx + 1] += 1
end
idx += 1
prevloc = codeloc
end
if code[idx] isa Expr && ssavaluetypes[idx] === Union{}
if !(idx < length(code) && isa(code[idx + 1], ReturnNode) && !isdefined((code[idx + 1]::ReturnNode), :val))
# insert unreachable in the same basic block after the current instruction (splitting it)
insert!(code, idx + 1, ReturnNode())
insert!(codelocs, idx + 1, codelocs[idx])
insert!(ssavaluetypes, idx + 1, Union{})
insert!(stmtinfo, idx + 1, nothing)
insert!(ssaflags, idx + 1, ssaflags[idx])
if oldidx < length(changemap)
changemap[oldidx + 1] += 1
coverage && (labelmap[oldidx + 1] += 1)
end
idx += 1
end
end
idx += 1
oldidx += 1
end
renumber_ir_elements!(code, changemap, labelmap)
meta = Any[]
for i = 1:length(code)
code[i] = remove_meta!(code[i], meta)
end
strip_trailing_junk!(ci, code, stmtinfo)
cfg = compute_basic_blocks(code)
types = Any[]
stmts = InstructionStream(code, types, stmtinfo, codelocs, ssaflags)
linetable = ci.linetable
isa(linetable, Vector{LineInfoNode}) || (linetable = collect(LineInfoNode, linetable::Vector{Any}))
ir = IRCode(stmts, cfg, linetable, sv.slottypes, meta, sv.sptypes)
return ir
end
function remove_meta!(@nospecialize(stmt), meta::Vector{Any})
if isa(stmt, Expr)
head = stmt.head
if head === :meta
args = stmt.args
if length(args) > 0
push!(meta, stmt)
end
return nothing
end
end
return stmt
end
function slot2reg(ir::IRCode, ci::CodeInfo, sv::OptimizationState)
# need `ci` for the slot metadata, IR for the code
svdef = sv.linfo.def
nargs = isa(svdef, Method) ? Int(svdef.nargs) : 0
@timeit "domtree 1" domtree = construct_domtree(ir.cfg.blocks)
defuse_insts = scan_slot_def_use(nargs, ci, ir.stmts.inst)
@timeit "construct_ssa" ir = construct_ssa!(ci, ir, domtree, defuse_insts, sv.slottypes) # consumes `ir`
return ir
end
## Computing the cost of a function body
# saturating sum (inputs are nonnegative), prevents overflow with typemax(Int) below
plus_saturate(x::Int, y::Int) = max(x, y, x+y)
# known return type
isknowntype(@nospecialize T) = (T === Union{}) || isa(T, Const) || isconcretetype(widenconst(T))
function statement_cost(ex::Expr, line::Int, src::Union{CodeInfo, IRCode}, sptypes::Vector{Any},
union_penalties::Bool, params::OptimizationParams, error_path::Bool = false)
head = ex.head
if is_meta_expr_head(head)
return 0
elseif head === :call
farg = ex.args[1]
ftyp = argextype(farg, src, sptypes)
if ftyp === IntrinsicFunction && farg isa SSAValue
# if this comes from code that was already inlined into another function,
# Consts have been widened. try to recover in simple cases.
farg = isa(src, CodeInfo) ? src.code[farg.id] : src.stmts[farg.id][:inst]
if isa(farg, GlobalRef) || isa(farg, QuoteNode) || isa(farg, IntrinsicFunction) || isexpr(farg, :static_parameter)
ftyp = argextype(farg, src, sptypes)
end
end
f = singleton_type(ftyp)
if isa(f, IntrinsicFunction)
iidx = Int(reinterpret(Int32, f::IntrinsicFunction)) + 1
if !isassigned(T_IFUNC_COST, iidx)
# unknown/unhandled intrinsic
return params.inline_nonleaf_penalty
end
return T_IFUNC_COST[iidx]
end
if isa(f, Builtin)
# The efficiency of operations like a[i] and s.b
# depend strongly on whether the result can be
# inferred, so check the type of ex
if f === Core.getfield || f === Core.tuple
# we might like to penalize non-inferrability, but
# tuple iteration/destructuring makes that impossible
# return plus_saturate(argcost, isknowntype(extyp) ? 1 : params.inline_nonleaf_penalty)
return 0
elseif (f === Core.arrayref || f === Core.const_arrayref || f === Core.arrayset) && length(ex.args) >= 3
atyp = argextype(ex.args[3], src, sptypes)
return isknowntype(atyp) ? 4 : error_path ? params.inline_error_path_cost : params.inline_nonleaf_penalty
elseif f === typeassert && isconstType(widenconst(argextype(ex.args[3], src, sptypes)))
return 1
elseif f === Core.isa
# If we're in a union context, we penalize type computations
# on union types. In such cases, it is usually better to perform
# union splitting on the outside.
if union_penalties && isa(argextype(ex.args[2], src, sptypes), Union)
return params.inline_nonleaf_penalty
end
end
fidx = find_tfunc(f)
if fidx === nothing
# unknown/unhandled builtin
# Use the generic cost of a direct function call
return 20
end
return T_FFUNC_COST[fidx]
end
extyp = line == -1 ? Any : argextype(SSAValue(line), src, sptypes)
if extyp === Union{}
return 0
end
return error_path ? params.inline_error_path_cost : params.inline_nonleaf_penalty
elseif head === :foreigncall || head === :invoke || head == :invoke_modify
# Calls whose "return type" is Union{} do not actually return:
# they are errors. Since these are not part of the typical
# run-time of the function, we omit them from
# consideration. This way, non-inlined error branches do not
# prevent inlining.
extyp = line == -1 ? Any : argextype(SSAValue(line), src, sptypes)
return extyp === Union{} ? 0 : 20
elseif head === :(=)
if ex.args[1] isa GlobalRef
cost = 20
else
cost = 0
end
a = ex.args[2]
if a isa Expr
cost = plus_saturate(cost, statement_cost(a, -1, src, sptypes, union_penalties, params, error_path))
end
return cost
elseif head === :copyast
return 100
elseif head === :enter
# try/catch is a couple function calls,
# but don't inline functions with try/catch
# since these aren't usually performance-sensitive functions,
# and llvm is more likely to miscompile them when these functions get large
return typemax(Int)
end
return 0
end
function statement_or_branch_cost(@nospecialize(stmt), line::Int, src::Union{CodeInfo, IRCode}, sptypes::Vector{Any},
union_penalties::Bool, params::OptimizationParams)
thiscost = 0
dst(tgt) = isa(src, IRCode) ? first(src.cfg.blocks[tgt].stmts) : tgt
if stmt isa Expr
thiscost = statement_cost(stmt, line, src, sptypes, union_penalties, params,
is_stmt_throw_block(isa(src, IRCode) ? src.stmts.flag[line] : src.ssaflags[line]))::Int
elseif stmt isa GotoNode
# loops are generally always expensive
# but assume that forward jumps are already counted for from
# summing the cost of the not-taken branch
thiscost = dst(stmt.label) < line ? 40 : 0
elseif stmt isa GotoIfNot
thiscost = dst(stmt.dest) < line ? 40 : 0
end
return thiscost
end
function inline_worthy(ir::IRCode,
params::OptimizationParams, union_penalties::Bool=false, cost_threshold::Integer=params.inline_cost_threshold)
bodycost::Int = 0
for line = 1:length(ir.stmts)
stmt = ir.stmts[line][:inst]
thiscost = statement_or_branch_cost(stmt, line, ir, ir.sptypes, union_penalties, params)
bodycost = plus_saturate(bodycost, thiscost)
bodycost > cost_threshold && return false
end
return true
end
function statement_costs!(cost::Vector{Int}, body::Vector{Any}, src::Union{CodeInfo, IRCode}, sptypes::Vector{Any}, unionpenalties::Bool, params::OptimizationParams)
maxcost = 0
for line = 1:length(body)
stmt = body[line]
thiscost = statement_or_branch_cost(stmt, line, src, sptypes,
unionpenalties, params)
cost[line] = thiscost
if thiscost > maxcost
maxcost = thiscost
end
end
return maxcost
end
function renumber_ir_elements!(body::Vector{Any}, changemap::Vector{Int})
return renumber_ir_elements!(body, changemap, changemap)
end
function cumsum_ssamap!(ssamap::Vector{Int})
rel_change = 0
for i = 1:length(ssamap)
rel_change += ssamap[i]
if ssamap[i] == -1
# Keep a marker that this statement was deleted
ssamap[i] = typemin(Int)
else
ssamap[i] = rel_change
end
end
end
function renumber_ir_elements!(body::Vector{Any}, ssachangemap::Vector{Int}, labelchangemap::Vector{Int})
cumsum_ssamap!(labelchangemap)
if ssachangemap !== labelchangemap
cumsum_ssamap!(ssachangemap)
end
if labelchangemap[end] == 0 && ssachangemap[end] == 0
return
end
for i = 1:length(body)
el = body[i]
if isa(el, GotoNode)
body[i] = GotoNode(el.label + labelchangemap[el.label])
elseif isa(el, GotoIfNot)
cond = el.cond
if isa(cond, SSAValue)
cond = SSAValue(cond.id + ssachangemap[cond.id])
end
body[i] = GotoIfNot(cond, el.dest + labelchangemap[el.dest])
elseif isa(el, ReturnNode)
if isdefined(el, :val)
val = el.val
if isa(val, SSAValue)
body[i] = ReturnNode(SSAValue(val.id + ssachangemap[val.id]))
end
end
elseif isa(el, SSAValue)
body[i] = SSAValue(el.id + ssachangemap[el.id])
elseif isa(el, PhiNode)
i = 1
edges = el.edges
values = el.values
while i <= length(edges)
was_deleted = ssachangemap[edges[i]] == typemin(Int)
if was_deleted
deleteat!(edges, i)
deleteat!(values, i)
else
edges[i] += ssachangemap[edges[i]]
val = values[i]
if isa(val, SSAValue)
values[i] = SSAValue(val.id + ssachangemap[val.id])
end
i += 1
end
end
elseif isa(el, Expr)
if el.head === :(=) && el.args[2] isa Expr
el = el.args[2]::Expr
end
if el.head === :enter
tgt = el.args[1]::Int
el.args[1] = tgt + labelchangemap[tgt]
elseif !is_meta_expr_head(el.head)
args = el.args
for i = 1:length(args)
el = args[i]
if isa(el, SSAValue)
args[i] = SSAValue(el.id + ssachangemap[el.id])
end
end
end
end
end
end