-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathinferencestate.jl
1215 lines (1083 loc) · 44.9 KB
/
inferencestate.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
# data structures
# ===============
mutable struct BitSetBoundedMinPrioritySet <: AbstractSet{Int}
elems::BitSet
min::Int
# Stores whether min is exact or a lower bound
# If exact, it is not set in elems
min_exact::Bool
max::Int
end
function BitSetBoundedMinPrioritySet(max::Int)
bs = BitSet()
bs.offset = 0
BitSetBoundedMinPrioritySet(bs, max+1, true, max)
end
@noinline function _advance_bsbmp!(bsbmp::BitSetBoundedMinPrioritySet)
@assert !bsbmp.min_exact
bsbmp.min = _bits_findnext(bsbmp.elems.bits, bsbmp.min)::Int
bsbmp.min < 0 && (bsbmp.min = bsbmp.max + 1)
bsbmp.min_exact = true
delete!(bsbmp.elems, bsbmp.min)
return nothing
end
function isempty(bsbmp::BitSetBoundedMinPrioritySet)
if bsbmp.min > bsbmp.max
return true
end
bsbmp.min_exact && return false
_advance_bsbmp!(bsbmp)
return bsbmp.min > bsbmp.max
end
function popfirst!(bsbmp::BitSetBoundedMinPrioritySet)
bsbmp.min_exact || _advance_bsbmp!(bsbmp)
m = bsbmp.min
m > bsbmp.max && throw(ArgumentError("BitSetBoundedMinPrioritySet must be non-empty"))
bsbmp.min = m+1
bsbmp.min_exact = false
return m
end
function push!(bsbmp::BitSetBoundedMinPrioritySet, idx::Int)
if idx <= bsbmp.min
if bsbmp.min_exact && bsbmp.min < bsbmp.max && idx != bsbmp.min
push!(bsbmp.elems, bsbmp.min)
end
bsbmp.min = idx
bsbmp.min_exact = true
return nothing
end
push!(bsbmp.elems, idx)
return nothing
end
function in(idx::Int, bsbmp::BitSetBoundedMinPrioritySet)
if bsbmp.min_exact && idx == bsbmp.min
return true
end
return idx in bsbmp.elems
end
iterate(bsbmp::BitSetBoundedMinPrioritySet, s...) = iterate(bsbmp.elems, s...)
function append!(bsbmp::BitSetBoundedMinPrioritySet, itr)
for val in itr
push!(bsbmp, val)
end
end
mutable struct TwoPhaseVectorView <: AbstractVector{Int}
const data::Vector{Int}
count::Int
const range::UnitRange{Int}
end
size(tpvv::TwoPhaseVectorView) = (tpvv.count,)
function getindex(tpvv::TwoPhaseVectorView, i::Int)
checkbounds(tpvv, i)
@inbounds tpvv.data[first(tpvv.range) + i - 1]
end
function push!(tpvv::TwoPhaseVectorView, v::Int)
tpvv.count += 1
tpvv.data[first(tpvv.range) + tpvv.count - 1] = v
return nothing
end
"""
mutable struct TwoPhaseDefUseMap
This struct is intended as a memory- and GC-pressure-efficient mechanism
for incrementally computing def-use maps. The idea is that the def-use map
is constructed into two passes over the IR. In the first, we simply count the
the number of uses, computing the number of uses for each def as well as the
total number of uses. In the second pass, we actually fill in the def-use
information.
The idea is that either of these two phases can be combined with other useful
work that needs to scan the instruction stream anyway, while avoiding the
significant allocation pressure of e.g. allocating an array for every SSA value
or attempting to dynamically move things around as new uses are discovered.
The def-use map is presented as a vector of vectors. For every def, indexing
into the map will return a vector of uses.
"""
mutable struct TwoPhaseDefUseMap <: AbstractVector{TwoPhaseVectorView}
ssa_uses::Vector{Int}
data::Vector{Int}
complete::Bool
end
function complete!(tpdum::TwoPhaseDefUseMap)
cumsum = 0
for i = 1:length(tpdum.ssa_uses)
this_val = cumsum + 1
cumsum += tpdum.ssa_uses[i]
tpdum.ssa_uses[i] = this_val
end
resize!(tpdum.data, cumsum)
fill!(tpdum.data, 0)
tpdum.complete = true
end
function TwoPhaseDefUseMap(nssas::Int)
ssa_uses = zeros(Int, nssas)
data = Int[]
complete = false
return TwoPhaseDefUseMap(ssa_uses, data, complete)
end
function count!(tpdum::TwoPhaseDefUseMap, arg::SSAValue)
@assert !tpdum.complete
tpdum.ssa_uses[arg.id] += 1
end
function kill_def_use!(tpdum::TwoPhaseDefUseMap, def::Int, use::Int)
if !tpdum.complete
tpdum.ssa_uses[def] -= 1
else
range = tpdum.ssa_uses[def]:(def == length(tpdum.ssa_uses) ? length(tpdum.data) : (tpdum.ssa_uses[def + 1] - 1))
# TODO: Sorted
useidx = findfirst(idx->tpdum.data[idx] == use, range)
@assert useidx !== nothing
idx = range[useidx]
while idx < lastindex(range)
ndata = tpdum.data[idx+1]
ndata == 0 && break
tpdum.data[idx] = ndata
idx += 1
end
tpdum.data[idx] = 0
end
end
kill_def_use!(tpdum::TwoPhaseDefUseMap, def::SSAValue, use::Int) =
kill_def_use!(tpdum, def.id, use)
function getindex(tpdum::TwoPhaseDefUseMap, idx::Int)
@assert tpdum.complete
range = tpdum.ssa_uses[idx]:(idx == length(tpdum.ssa_uses) ? length(tpdum.data) : (tpdum.ssa_uses[idx + 1] - 1))
# TODO: Make logarithmic
nelems = 0
for i in range
tpdum.data[i] == 0 && break
nelems += 1
end
return TwoPhaseVectorView(tpdum.data, nelems, range)
end
mutable struct LazyCFGReachability
ir::IRCode
reachability::CFGReachability
LazyCFGReachability(ir::IRCode) = new(ir)
end
function get!(x::LazyCFGReachability)
isdefined(x, :reachability) && return x.reachability
domtree = construct_domtree(x.ir)
return x.reachability = CFGReachability(x.ir.cfg, domtree)
end
mutable struct LazyGenericDomtree{IsPostDom}
ir::IRCode
domtree::GenericDomTree{IsPostDom}
LazyGenericDomtree{IsPostDom}(ir::IRCode) where {IsPostDom} = new{IsPostDom}(ir)
end
function get!(x::LazyGenericDomtree{IsPostDom}) where {IsPostDom}
isdefined(x, :domtree) && return x.domtree
return @timeit "domtree 2" x.domtree = IsPostDom ?
construct_postdomtree(x.ir) :
construct_domtree(x.ir)
end
const LazyDomtree = LazyGenericDomtree{false}
const LazyPostDomtree = LazyGenericDomtree{true}
# InferenceState
# ==============
"""
const VarTable = Vector{VarState}
The extended lattice that maps local variables to inferred type represented as `AbstractLattice`.
Each index corresponds to the `id` of `SlotNumber` which identifies each local variable.
Note that `InferenceState` will maintain multiple `VarTable`s at each SSA statement
to enable flow-sensitive analysis.
"""
const VarTable = Vector{VarState}
struct StatementState
vtypes::Union{VarTable,Nothing}
saw_latestworld::Bool
end
const CACHE_MODE_NULL = 0x00 # not cached, optimization optional
const CACHE_MODE_GLOBAL = 0x01 << 0 # cached globally, optimization required
const CACHE_MODE_LOCAL = 0x01 << 1 # cached locally, optimization required
const CACHE_MODE_VOLATILE = 0x01 << 2 # not cached, optimization required
abstract type Handler end
get_enter_idx(handler::Handler) = get_enter_idx_impl(handler)::Int
mutable struct TryCatchFrame <: Handler
exct
scopet
const enter_idx::Int
scope_uses::Vector{Int}
TryCatchFrame(@nospecialize(exct), @nospecialize(scopet), enter_idx::Int) =
new(exct, scopet, enter_idx)
end
TryCatchFrame(stmt::EnterNode, pc::Int) =
TryCatchFrame(Bottom, isdefined(stmt, :scope) ? Bottom : nothing, pc)
get_enter_idx_impl((; enter_idx)::TryCatchFrame) = enter_idx
struct SimpleHandler <: Handler
enter_idx::Int
end
SimpleHandler(::EnterNode, pc::Int) = SimpleHandler(pc)
get_enter_idx_impl((; enter_idx)::SimpleHandler) = enter_idx
struct HandlerInfo{T<:Handler}
handlers::Vector{T}
handler_at::Vector{Tuple{Int,Int}} # tuple of current (handler, exception stack) value at the pc
end
struct WorldWithRange
this::UInt
valid_worlds::WorldRange
function WorldWithRange(world::UInt, valid_worlds::WorldRange)
if !(world in valid_worlds)
error("invalid age range update")
end
return new(world, valid_worlds)
end
end
intersect(world::WorldWithRange, valid_worlds::WorldRange) =
WorldWithRange(world.this, intersect(world.valid_worlds, valid_worlds))
mutable struct InferenceState
#= information about this method instance =#
linfo::MethodInstance
world::WorldWithRange
mod::Module
sptypes::Vector{VarState}
slottypes::Vector{Any}
src::CodeInfo
cfg::CFG
spec_info::SpecInfo
#= intermediate states for local abstract interpretation =#
currbb::Int
currpc::Int
ip::BitSet#=TODO BoundedMinPrioritySet=# # current active instruction pointers
handler_info::Union{Nothing,HandlerInfo{TryCatchFrame}}
ssavalue_uses::Vector{BitSet} # ssavalue sparsity and restart info
# TODO: Could keep this sparsely by doing structural liveness analysis ahead of time.
bb_vartables::Vector{Union{Nothing,VarTable}} # nothing if not analyzed yet
bb_saw_latestworld::Vector{Bool}
ssavaluetypes::Vector{Any}
ssaflags::Vector{UInt32}
edges::Vector{Any}
stmt_info::Vector{CallInfo}
#= intermediate states for interprocedural abstract interpretation =#
tasks::Vector{WorkThunk}
pclimitations::IdSet{InferenceState} # causes of precision restrictions (LimitedAccuracy) on currpc ssavalue
limitations::IdSet{InferenceState} # causes of precision restrictions (LimitedAccuracy) on return
cycle_backedges::Vector{Tuple{InferenceState, Int}} # call-graph backedges connecting from callee to caller
# IPO tracking of in-process work, shared with all frames given AbstractInterpreter
callstack #::Vector{AbsIntState}
parentid::Int # index into callstack of the parent frame that originally added this frame (call frame_parent to extract the current parent of the SCC)
frameid::Int # index into callstack at which this object is found (or zero, if this is not a cached frame and has no parent)
cycleid::Int # index into the callstack of the topmost frame in the cycle (all frames in the same cycle share the same cycleid)
#= results =#
result::InferenceResult # remember where to put the result
unreachable::BitSet # statements that were found to be statically unreachable
bestguess #::Type
exc_bestguess
ipo_effects::Effects
#= flags =#
# Whether to restrict inference of abstract call sites to avoid excessive work
# Set by default for toplevel frame.
restrict_abstract_call_sites::Bool
cache_mode::UInt8 # TODO move this to InferenceResult?
insert_coverage::Bool
# The interpreter that created this inference state. Not looked at by
# NativeInterpreter. But other interpreters may use this to detect cycles
interp::AbstractInterpreter
# src is assumed to be a newly-allocated CodeInfo, that can be modified in-place to contain intermediate results
function InferenceState(result::InferenceResult, src::CodeInfo, cache_mode::UInt8,
interp::AbstractInterpreter)
mi = result.linfo
world = get_inference_world(interp)
if world == typemax(UInt)
error("Entering inference from a generated function with an invalid world")
end
def = mi.def
mod = isa(def, Method) ? def.module : def
sptypes = sptypes_from_meth_instance(mi)
code = src.code::Vector{Any}
cfg = compute_basic_blocks(code)
spec_info = SpecInfo(src)
currbb = currpc = 1
ip = BitSet(1) # TODO BitSetBoundedMinPrioritySet(1)
handler_info = ComputeTryCatch{TryCatchFrame}()(code)
nssavalues = src.ssavaluetypes::Int
ssavalue_uses = find_ssavalue_uses(code, nssavalues)
nstmts = length(code)
edges = []
stmt_info = CallInfo[ NoCallInfo() for i = 1:nstmts ]
nslots = length(src.slotflags)
slottypes = Vector{Any}(undef, nslots)
bb_saw_latestworld = Bool[false for i = 1:length(cfg.blocks)]
bb_vartables = Union{Nothing,VarTable}[ nothing for i = 1:length(cfg.blocks) ]
bb_vartable1 = bb_vartables[1] = VarTable(undef, nslots)
argtypes = result.argtypes
argtypes = va_process_argtypes(typeinf_lattice(interp), argtypes, src.nargs, src.isva)
nargtypes = length(argtypes)
for i = 1:nslots
argtyp = (i > nargtypes) ? Bottom : argtypes[i]
if argtyp === Bool && has_conditional(typeinf_lattice(interp))
argtyp = Conditional(i, Const(true), Const(false))
end
slottypes[i] = argtyp
bb_vartable1[i] = VarState(argtyp, i > nargtypes)
end
src.ssavaluetypes = ssavaluetypes = Any[ NOT_FOUND for i = 1:nssavalues ]
ssaflags = copy(src.ssaflags)
unreachable = BitSet()
pclimitations = IdSet{InferenceState}()
limitations = IdSet{InferenceState}()
cycle_backedges = Tuple{InferenceState,Int}[]
callstack = AbsIntState[]
tasks = WorkThunk[]
valid_worlds = WorldRange(1, get_world_counter())
bestguess = Bottom
exc_bestguess = Bottom
ipo_effects = EFFECTS_TOTAL
insert_coverage = should_insert_coverage(mod, src.debuginfo)
if insert_coverage
ipo_effects = Effects(ipo_effects; effect_free = ALWAYS_FALSE)
end
if def isa Method
nonoverlayed = is_nonoverlayed(def) ? ALWAYS_TRUE :
is_effect_overridden(def, :consistent_overlay) ? CONSISTENT_OVERLAY :
ALWAYS_FALSE
ipo_effects = Effects(ipo_effects; nonoverlayed)
end
restrict_abstract_call_sites = isa(def, Module)
parentid = frameid = cycleid = 0
this = new(
mi, WorldWithRange(world, valid_worlds), mod, sptypes, slottypes, src, cfg, spec_info,
currbb, currpc, ip, handler_info, ssavalue_uses, bb_vartables, bb_saw_latestworld, ssavaluetypes, ssaflags, edges, stmt_info,
tasks, pclimitations, limitations, cycle_backedges, callstack, parentid, frameid, cycleid,
result, unreachable, bestguess, exc_bestguess, ipo_effects,
restrict_abstract_call_sites, cache_mode, insert_coverage,
interp)
# some more setups
if !iszero(cache_mode & CACHE_MODE_LOCAL)
push!(get_inference_cache(interp), result)
end
if !iszero(cache_mode & CACHE_MODE_GLOBAL)
push!(callstack, this)
this.cycleid = this.frameid = length(callstack)
end
# Apply generated function restrictions
if src.min_world != 1 || src.max_world != typemax(UInt)
# From generated functions
update_valid_age!(this, WorldRange(src.min_world, src.max_world))
end
return this
end
end
gethandler(frame::InferenceState, pc::Int=frame.currpc) = gethandler(frame.handler_info, pc)
gethandler(::Nothing, ::Int) = nothing
function gethandler(handler_info::HandlerInfo, pc::Int)
handler_idx = handler_info.handler_at[pc][1]
handler_idx == 0 && return nothing
return handler_info.handlers[handler_idx]
end
is_nonoverlayed(m::Method) = !isdefined(m, :external_mt)
is_nonoverlayed(interp::AbstractInterpreter) = !isoverlayed(method_table(interp))
isoverlayed(::MethodTableView) = error("unsatisfied MethodTableView interface")
isoverlayed(::InternalMethodTable) = false
isoverlayed(::OverlayMethodTable) = true
isoverlayed(mt::CachedMethodTable) = isoverlayed(mt.table)
is_inferred(sv::InferenceState) = is_inferred(sv.result)
is_inferred(result::InferenceResult) = result.result !== nothing
was_reached(sv::InferenceState, pc::Int) = sv.ssavaluetypes[pc] !== NOT_FOUND
struct ComputeTryCatch{T<:Handler} end
const compute_trycatch = ComputeTryCatch{SimpleHandler}()
(compute_trycatch::ComputeTryCatch{SimpleHandler})(ir::IRCode) =
compute_trycatch(ir.stmts.stmt, ir.cfg.blocks)
"""
(::ComputeTryCatch{Handler})(code, [, bbs]) -> handler_info::Union{Nothing,HandlerInfo{Handler}}
const compute_trycatch = ComputeTryCatch{SimpleHandler}()
Given the code of a function, compute, at every statement, the current
try/catch handler, and the current exception stack top. This function returns
a tuple of:
1. `handler_info.handler_at`: A statement length vector of tuples
`(catch_handler, exception_stack)`, which are indices into `handlers`
2. `handler_info.handlers`: A `Handler` vector of handlers
"""
function (::ComputeTryCatch{Handler})(code::Vector{Any}, bbs::Union{Vector{BasicBlock},Nothing}=nothing) where Handler
# The goal initially is to record the frame like this for the state at exit:
# 1: (enter 3) # == 0
# 3: (expr) # == 1
# 3: (leave %1) # == 1
# 4: (expr) # == 0
# then we can find all `try`s by walking backwards from :enter statements,
# and all `catch`es by looking at the statement after the :enter
n = length(code)
ip = BitSet()
ip.offset = 0 # for _bits_findnext
push!(ip, n + 1)
handler_info = nothing
# start from all :enter statements and record the location of the try
for pc = 1:n
stmt = code[pc]
if isa(stmt, EnterNode)
(;handlers, handler_at) = handler_info =
(handler_info === nothing ? HandlerInfo{Handler}(Handler[], fill((0, 0), n)) : handler_info)
l = stmt.catch_dest
(bbs !== nothing) && (l != 0) && (l = first(bbs[l].stmts))
push!(handlers, Handler(stmt, pc))
handler_id = length(handlers)
handler_at[pc + 1] = (handler_id, 0)
push!(ip, pc + 1)
if l != 0
handler_at[l] = (0, handler_id)
push!(ip, l)
end
end
end
if handler_info === nothing
return nothing
end
# now forward those marks to all :leave statements
(;handlers, handler_at) = handler_info
while true
# make progress on the active ip set
pc = _bits_findnext(ip.bits, 0)::Int
pc > n && break
while true # inner loop optimizes the common case where it can run straight from pc to pc + 1
pc´ = pc + 1 # next program-counter (after executing instruction)
delete!(ip, pc)
cur_stacks = handler_at[pc]
@assert cur_stacks != (0, 0) "unbalanced try/catch"
stmt = code[pc]
if isa(stmt, GotoNode)
pc´ = stmt.label
(bbs !== nothing) && (pc´ = first(bbs[pc´].stmts))
elseif isa(stmt, GotoIfNot)
l = stmt.dest::Int
(bbs !== nothing) && (l = first(bbs[l].stmts))
if handler_at[l] != cur_stacks
@assert handler_at[l][1] == 0 || handler_at[l][1] == cur_stacks[1] "unbalanced try/catch"
handler_at[l] = cur_stacks
push!(ip, l)
end
elseif isa(stmt, ReturnNode)
@assert !isdefined(stmt, :val) || cur_stacks[1] == 0 "unbalanced try/catch"
break
elseif isa(stmt, EnterNode)
l = stmt.catch_dest
(bbs !== nothing) && (l != 0) && (l = first(bbs[l].stmts))
# We assigned a handler number above. Here we just merge that
# with out current handler information.
if l != 0
handler_at[l] = (cur_stacks[1], handler_at[l][2])
end
cur_stacks = (handler_at[pc´][1], cur_stacks[2])
elseif isa(stmt, Expr)
head = stmt.head
if head === :leave
l = 0
for j = 1:length(stmt.args)
arg = stmt.args[j]
if arg === nothing
continue
else
enter_stmt = code[(arg::SSAValue).id]
if enter_stmt === nothing
continue
end
@assert isa(enter_stmt, EnterNode) "malformed :leave"
end
l += 1
end
cur_hand = cur_stacks[1]
for i = 1:l
cur_hand = handler_at[get_enter_idx(handlers[cur_hand])][1]
end
cur_stacks = (cur_hand, cur_stacks[2])
cur_stacks == (0, 0) && break
elseif head === :pop_exception
cur_stacks = (cur_stacks[1], handler_at[(stmt.args[1]::SSAValue).id][2])
cur_stacks == (0, 0) && break
end
end
pc´ > n && break # can't proceed with the fast-path fall-through
if handler_at[pc´] != cur_stacks
handler_at[pc´] = cur_stacks
elseif !in(pc´, ip)
break # already visited
end
pc = pc´
end
end
@assert first(ip) == n + 1
return handler_info
end
# check if coverage mode is enabled
function should_insert_coverage(mod::Module, debuginfo::DebugInfo)
coverage_enabled(mod) && return true
JLOptions().code_coverage == 3 || return false
# path-specific coverage mode: if any line falls in a tracked file enable coverage for all
return _should_insert_coverage(debuginfo)
end
_should_insert_coverage(mod::Symbol) = is_file_tracked(mod)
_should_insert_coverage(mod::Method) = _should_insert_coverage(mod.file)
_should_insert_coverage(mod::MethodInstance) = _should_insert_coverage(mod.def)
_should_insert_coverage(mod::Module) = false
function _should_insert_coverage(info::DebugInfo)
linetable = info.linetable
linetable === nothing || (_should_insert_coverage(linetable) && return true)
_should_insert_coverage(info.def) && return true
return false
end
function InferenceState(result::InferenceResult, cache_mode::UInt8, interp::AbstractInterpreter)
# prepare an InferenceState object for inferring lambda
world = get_inference_world(interp)
mi = result.linfo
src = retrieve_code_info(mi, world)
src === nothing && return nothing
maybe_validate_code(mi, src, "lowered")
return InferenceState(result, src, cache_mode, interp)
end
InferenceState(result::InferenceResult, cache_mode::Symbol, interp::AbstractInterpreter) =
InferenceState(result, convert_cache_mode(cache_mode), interp)
InferenceState(result::InferenceResult, src::CodeInfo, cache_mode::Symbol, interp::AbstractInterpreter) =
InferenceState(result, src, convert_cache_mode(cache_mode), interp)
function convert_cache_mode(cache_mode::Symbol)
if cache_mode === :global
return CACHE_MODE_GLOBAL
elseif cache_mode === :local
return CACHE_MODE_LOCAL
elseif cache_mode === :volatile
return CACHE_MODE_VOLATILE
elseif cache_mode === :no
return CACHE_MODE_NULL
end
error("unexpected `cache_mode` is given")
end
"""
constrains_param(var::TypeVar, sig, covariant::Bool, type_constrains::Bool)
Check if `var` will be constrained to have a definite value
in any concrete leaftype subtype of `sig`.
It is used as a helper to determine whether type intersection is guaranteed to be able to
find a value for a particular type parameter.
A necessary condition for type intersection to not assign a parameter is that it only
appears in a `Union[All]` and during subtyping some other union component (that does not
constrain the type parameter) is selected.
The `type_constrains` flag determines whether Type{T} is considered to be constraining
`T`. This is not true in general, because of the existence of types with free type
parameters, however, some callers would like to ignore this corner case.
"""
function constrains_param(var::TypeVar, @nospecialize(typ), covariant::Bool, type_constrains::Bool=false)
typ === var && return true
while typ isa UnionAll
covariant && constrains_param(var, typ.var.ub, covariant, type_constrains) && return true
# typ.var.lb doesn't constrain var
typ = typ.body
end
if typ isa Union
# for unions, verify that both options would constrain var
ba = constrains_param(var, typ.a, covariant, type_constrains)
bb = constrains_param(var, typ.b, covariant, type_constrains)
(ba && bb) && return true
elseif typ isa DataType
# return true if any param constrains var
fc = length(typ.parameters)
if fc > 0
if typ.name === Tuple.name
# vararg tuple needs special handling
for i in 1:(fc - 1)
p = typ.parameters[i]
constrains_param(var, p, covariant, type_constrains) && return true
end
lastp = typ.parameters[fc]
vararg = unwrap_unionall(lastp)
if vararg isa Core.TypeofVararg && isdefined(vararg, :N)
constrains_param(var, vararg.N, covariant, type_constrains) && return true
# T = vararg.parameters[1] doesn't constrain var
else
constrains_param(var, lastp, covariant, type_constrains) && return true
end
else
if typ.name === typename(Type) && typ.parameters[1] === var && var.ub === Any
# Types with free type parameters are <: Type cause the typevar
# to be unconstrained because Type{T} with free typevars is illegal
return type_constrains
end
for i in 1:fc
p = typ.parameters[i]
constrains_param(var, p, false, type_constrains) && return true
end
end
end
end
return false
end
const EMPTY_SPTYPES = VarState[]
function sptypes_from_meth_instance(mi::MethodInstance)
def = mi.def
isa(def, Method) || return EMPTY_SPTYPES # toplevel
sig = def.sig
if isempty(mi.sparam_vals)
isa(sig, UnionAll) || return EMPTY_SPTYPES
# mi is unspecialized
spvals = Any[]
sig′ = sig
while isa(sig′, UnionAll)
push!(spvals, sig′.var)
sig′ = sig′.body
end
else
spvals = mi.sparam_vals
end
nvals = length(spvals)
sptypes = Vector{VarState}(undef, nvals)
for i = 1:nvals
v = spvals[i]
if v isa TypeVar
temp = sig
for j = 1:i-1
temp = temp.body
end
vᵢ = (temp::UnionAll).var
sigtypes = (unwrap_unionall(temp)::DataType).parameters
for j = 1:length(sigtypes)
sⱼ = sigtypes[j]
if isType(sⱼ) && sⱼ.parameters[1] === vᵢ
# if this parameter came from `arg::Type{T}`,
# then `arg` is more precise than `Type{T} where lb<:T<:ub`
ty = fieldtype(mi.specTypes, j)
@goto ty_computed
elseif (va = va_from_vatuple(sⱼ)) !== nothing
# if this parameter came from `::Tuple{.., Vararg{T,vᵢ}}`,
# then `vᵢ` is known to be `Int`
if isdefined(va, :N) && va.N === vᵢ
ty = Int
@goto ty_computed
end
end
end
ub = unwraptv_ub(v)
if has_free_typevars(ub)
ub = Any
end
lb = unwraptv_lb(v)
if has_free_typevars(lb)
lb = Bottom
end
if Any === ub && lb === Bottom
ty = Any
else
tv = TypeVar(v.name, lb, ub)
ty = UnionAll(tv, Type{tv})
end
@label ty_computed
undef = !(let sig=sig
# if the specialized signature `linfo.specTypes` doesn't contain any free
# type variables, we can use it for a more accurate analysis of whether `v`
# is constrained or not, otherwise we should use `def.sig` which always
# doesn't contain any free type variables
if !has_free_typevars(mi.specTypes)
sig = mi.specTypes
end
@assert !has_free_typevars(sig)
constrains_param(v, sig, #=covariant=#true)
end)
elseif isvarargtype(v)
# if this parameter came from `func(..., ::Vararg{T,v})`,
# so the type is known to be `Int`
ty = Int
undef = false
else
ty = Const(v)
undef = false
end
sptypes[i] = VarState(ty, undef)
end
return sptypes
end
function va_from_vatuple(@nospecialize(t))
@_foldable_meta
t = unwrap_unionall(t)
if isa(t, DataType)
n = length(t.parameters)
if n > 0
va = t.parameters[n]
if isvarargtype(va)
return va
end
end
end
return nothing
end
_topmod(sv::InferenceState) = _topmod(frame_module(sv))
function record_ssa_assign!(𝕃ᵢ::AbstractLattice, ssa_id::Int, @nospecialize(new), frame::InferenceState)
ssavaluetypes = frame.ssavaluetypes
old = ssavaluetypes[ssa_id]
if old === NOT_FOUND || !is_lattice_equal(𝕃ᵢ, new, old)
ssavaluetypes[ssa_id] = new
W = frame.ip
for r in frame.ssavalue_uses[ssa_id]
if was_reached(frame, r)
usebb = block_for_inst(frame.cfg, r)
if usebb != frame.currbb || r < ssa_id
push!(W, usebb)
end
end
end
end
return nothing
end
function narguments(sv::InferenceState, include_va::Bool=true)
nargs = Int(sv.src.nargs)
if !include_va
nargs -= sv.src.isva
end
return nargs
end
# IRInterpretationState
# =====================
# TODO add `result::InferenceResult` and put the irinterp result into the inference cache?
mutable struct IRInterpretationState
const spec_info::SpecInfo
const ir::IRCode
const mi::MethodInstance
world::WorldWithRange
curridx::Int
const argtypes_refined::Vector{Bool}
const sptypes::Vector{VarState}
const tpdum::TwoPhaseDefUseMap
const ssa_refined::BitSet
const lazyreachability::LazyCFGReachability
const tasks::Vector{WorkThunk}
const edges::Vector{Any}
callstack #::Vector{AbsIntState}
frameid::Int
parentid::Int
new_call_inferred::Bool
function IRInterpretationState(interp::AbstractInterpreter,
spec_info::SpecInfo, ir::IRCode, mi::MethodInstance, argtypes::Vector{Any},
world::UInt, min_world::UInt, max_world::UInt)
curridx = 1
given_argtypes = Vector{Any}(undef, length(argtypes))
for i = 1:length(given_argtypes)
given_argtypes[i] = widenslotwrapper(argtypes[i])
end
if isa(mi.def, Method)
argtypes_refined = Bool[!⊑(optimizer_lattice(interp), ir.argtypes[i], given_argtypes[i])
for i = 1:length(given_argtypes)]
else
argtypes_refined = Bool[false for i = 1:length(given_argtypes)]
end
empty!(ir.argtypes)
append!(ir.argtypes, given_argtypes)
tpdum = TwoPhaseDefUseMap(length(ir.stmts))
ssa_refined = BitSet()
lazyreachability = LazyCFGReachability(ir)
valid_worlds = WorldRange(min_world, max_world == typemax(UInt) ? get_world_counter() : max_world)
tasks = WorkThunk[]
edges = Any[]
callstack = AbsIntState[]
return new(spec_info, ir, mi, WorldWithRange(world, valid_worlds), curridx, argtypes_refined, ir.sptypes, tpdum,
ssa_refined, lazyreachability, tasks, edges, callstack, 0, 0, #=new_call_inferred=#false)
end
end
function IRInterpretationState(interp::AbstractInterpreter,
codeinst::CodeInstance, mi::MethodInstance, argtypes::Vector{Any}, world::UInt)
@assert codeinst.def === mi "method instance is not synced with code instance"
src = @atomic :monotonic codeinst.inferred
if isa(src, String)
src = _uncompressed_ir(codeinst, src)
else
isa(src, CodeInfo) || return nothing
end
spec_info = SpecInfo(src)
ir = inflate_ir(src, mi)
argtypes = va_process_argtypes(optimizer_lattice(interp), argtypes, src.nargs, src.isva)
return IRInterpretationState(interp, spec_info, ir, mi, argtypes, world,
codeinst.min_world, codeinst.max_world)
end
# AbsIntState
# ===========
const AbsIntState = Union{InferenceState,IRInterpretationState}
function print_callstack(frame::AbsIntState)
print("=================== Callstack: ==================\n")
frames = frame.callstack::Vector{AbsIntState}
for idx = (frame.frameid == 0 ? 0 : 1):length(frames)
sv = (idx == 0 ? frame : frames[idx])
idx == frame.frameid && print("*")
print("[")
print(idx)
if sv isa InferenceState && !isa(sv.interp, NativeInterpreter)
print(", ")
print(typeof(sv.interp))
end
print("] ")
print(frame_instance(sv))
is_cached(sv) || print(" [uncached]")
sv.parentid == idx - 1 || print(" [parent=", sv.parentid, "]")
isempty(callers_in_cycle(sv)) || print(" [cycle=", sv.cycleid, "]")
println()
@assert sv.frameid == idx
end
print("================= End callstack ==================\n")
end
frame_instance(sv::InferenceState) = sv.linfo
frame_instance(sv::IRInterpretationState) = sv.mi
function frame_module(sv::AbsIntState)
mi = frame_instance(sv)
def = mi.def
isa(def, Module) && return def
return def.module
end
function frame_parent(sv::InferenceState)
sv.parentid == 0 && return nothing
callstack = sv.callstack::Vector{AbsIntState}
sv = callstack[sv.cycleid]::InferenceState
sv.parentid == 0 && return nothing
return callstack[sv.parentid]
end
frame_parent(sv::IRInterpretationState) = sv.parentid == 0 ? nothing : (sv.callstack::Vector{AbsIntState})[sv.parentid]
# add the orphan child to the parent and the parent to the child
function assign_parentchild!(child::InferenceState, parent::AbsIntState)
@assert child.frameid in (0, 1)
child.callstack = callstack = parent.callstack::Vector{AbsIntState}
child.parentid = parent.frameid
push!(callstack, child)
child.cycleid = child.frameid = length(callstack)
nothing
end
function assign_parentchild!(child::IRInterpretationState, parent::AbsIntState)
@assert child.frameid in (0, 1)
child.callstack = callstack = parent.callstack::Vector{AbsIntState}
child.parentid = parent.frameid
push!(callstack, child)
child.frameid = length(callstack)
nothing
end
function is_constproped(sv::InferenceState)
(;overridden_by_const) = sv.result
return overridden_by_const !== nothing
end
is_constproped(::IRInterpretationState) = true
is_cached(sv::InferenceState) = !iszero(sv.cache_mode & CACHE_MODE_GLOBAL)
is_cached(::IRInterpretationState) = false
spec_info(sv::InferenceState) = sv.spec_info
spec_info(sv::IRInterpretationState) = sv.spec_info
propagate_inbounds(sv::AbsIntState) = spec_info(sv).propagate_inbounds
method_for_inference_limit_heuristics(sv::AbsIntState) = spec_info(sv).method_for_inference_limit_heuristics
frame_world(sv::InferenceState) = sv.world.this
frame_world(sv::IRInterpretationState) = sv.world.this
function is_effect_overridden(sv::AbsIntState, effect::Symbol)
if is_effect_overridden(frame_instance(sv), effect)
return true
elseif is_effect_overridden(decode_statement_effects_override(sv), effect)
return true
end
return false
end
function is_effect_overridden(mi::MethodInstance, effect::Symbol)
def = mi.def
return isa(def, Method) && is_effect_overridden(def, effect)
end
is_effect_overridden(method::Method, effect::Symbol) = is_effect_overridden(decode_effects_override(method.purity), effect)
is_effect_overridden(override::EffectsOverride, effect::Symbol) = getfield(override, effect)
has_conditional(𝕃::AbstractLattice, ::InferenceState) = has_conditional(𝕃)
has_conditional(::AbstractLattice, ::IRInterpretationState) = false
# work towards converging the valid age range for sv
function update_valid_age!(sv::AbsIntState, valid_worlds::WorldRange)
sv.world = intersect(sv.world, valid_worlds)
return sv.world.valid_worlds
end
"""
AbsIntStackUnwind(sv::AbsIntState)
Iterate through all callers of the given `AbsIntState` in the abstract interpretation stack
(including the given `AbsIntState` itself), visiting children before their parents (i.e.
ascending the tree from the given `AbsIntState`).
Note that cycles may be visited in any order.
"""
struct AbsIntStackUnwind
sv::AbsIntState
end
iterate(unw::AbsIntStackUnwind) = (unw.sv, length(unw.sv.callstack::Vector{AbsIntState}))
function iterate(unw::AbsIntStackUnwind, frame::Int)
frame == 0 && return nothing
return ((unw.sv.callstack::Vector{AbsIntState})[frame], frame - 1)
end
struct AbsIntCycle
frames::Vector{AbsIntState}
cycleid::Int