-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·250 lines (228 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import numpy as np
import cv2
import sys
from tqdm import tqdm
import argparse
from datetime import datetime
import time
import torch
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import torch.distributions
import config
from models import hyp_classifier, Vgg_face_dag, load_vgg_face
from utils import save_checkpoint
from dataloader import ROSEYoutu, ReplayAttack, OULU_NPU, CASIA_MFSD, MSU_MFSD
import statistics
from loss import TPC_loss_hyp
def train(args):
#Params and Config
if os.path.isdir(os.path.join(args.save_root, f"{args.dataset}", args.expt_name)) == False:
os.makedirs(os.path.join(args.save_root, f"{args.dataset}", args.expt_name))
if os.path.isdir(os.path.join(args.log_root, f"{args.dataset}")) == False:
os.makedirs(os.path.join(args.log_root, f"{args.dataset}"))
file = open(f"{args.log_root}/{args.dataset}/{args.expt_name}_train.txt", "a")
sys.stdout = file
print("---"*30)
for arg in vars(args):
num_space = 25 - len(arg)
print(arg + " " * num_space + str(getattr(args, arg)))
print("---"*30)
device = "cuda:" + args.device
#Dataloaders
if args.dataset == "ROSEYoutu":
trainset = ROSEYoutu(split="train", csv_root=args.csv_root, data_root=args.data_root)
valset = ROSEYoutu(split="test", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "ReplayAttack":
trainset = ReplayAttack(split="train", csv_root=args.csv_root, data_root=args.data_root)
valset = ReplayAttack(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "OULU_NPU":
trainset = OULU_NPU(split="train", csv_root=args.csv_root, data_root=args.data_root)
valset = OULU_NPU(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "CASIA_MFSD":
trainset = CASIA_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
valset = CASIA_MFSD(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "MSU_MFSD":
trainset = MSU_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
valset = MSU_MFSD(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "ROSEYoutu":
trainset = ROSEYoutu(split="train", csv_root=args.csv_root, data_root=args.data_root)
valset = ROSEYoutu(split="test", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "OCI":
trainset_1 = OULU_NPU(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_2 = CASIA_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_3 = ReplayAttack(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset = torch.utils.data.ConcatDataset([trainset_1, trainset_2, trainset_3])
valset = MSU_MFSD(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "OMI":
trainset_1 = OULU_NPU(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_2 = MSU_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_3 = ReplayAttack(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset = torch.utils.data.ConcatDataset([trainset_1, trainset_2, trainset_3])
valset = CASIA_MFSD(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "OCM":
trainset_1 = OULU_NPU(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_2 = CASIA_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_3 = MSU_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset = torch.utils.data.ConcatDataset([trainset_1, trainset_2, trainset_3])
valset = ReplayAttack(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
elif args.dataset == "ICM":
trainset_1 = MSU_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_2 = CASIA_MFSD(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset_3 = ReplayAttack(split="train", csv_root=args.csv_root, data_root=args.data_root)
trainset = torch.utils.data.ConcatDataset([trainset_1, trainset_2, trainset_3])
valset = OULU_NPU(split="val", csv_root=args.csv_root, data_root=args.data_root)
train_dataloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size_train, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size_val, shuffle=False, num_workers=4)
#Metric Initialization
best_APCER = 1.0
best_NPCER = 1.0
best_ACER = 1.0
best_EER = 1.0
best_HTER = 1.0
best_roc_auc = 0.0
best_threshold = 0.0
best_accuracy_threshold = 0.0
metrics = {"APCER": 0, "NPCER":0, "ACER": 0, "EER": 0, "HTER": 0, "ROC_AUC_Score": 0, "Threshold": 0, "Accuracy_threshold": 0}
#Model Initialization
vgg_face = load_vgg_face(device=device, weights_path=f"{args.pretrained_model_path}", return_layer='fc6')
model = hyp_classifier(c=args.curvature).to(device)
if args.resume:
checkpoint_path = f'{args.save_root}/{args.dataset}/{args.expt_name}/best_epoch.pth'
checkpoint = torch.load(checkpoint_path, map_location=device)
vgg_face.load_state_dict(checkpoint['encoder_state_dict'])
model.load_state_dict(checkpoint['classifier_state_dict'])
metrics = checkpoint['metrics']
start_epoch = checkpoint['epoch']
for p in model.parameters():
p.requires_grad = True
for p in vgg_face.parameters():
p.requires_grad = False
print("Finetuning the below parameters --> ")
for name, p in vgg_face.named_parameters():
if name in args.finetune_params:
print(name)
p.requires_grad = True
#Optimizers and Loss function
optimizer_dict = [
{"params": filter(lambda p: p.requires_grad, model.parameters()), "lr": args.optim_lr},
{"params": filter(lambda p: p.requires_grad, vgg_face.parameters()), "lr": args.optim_lr}
]
optimizer = optim.Adam(optimizer_dict, lr=args.optim_lr, betas=(0.9, 0.999), weight_decay=args.optim_weight_decay)
criterion = {
'ce_loss': nn.CrossEntropyLoss().to(device),
}
#Train Function
start_epoch = 1
for num_epoch in range(start_epoch, args.epochs+1):
vgg_face.train()
model.train()
train_loss = 0
i = 0
pbar = tqdm(train_dataloader, leave=True)
for batch in pbar:
optimizer.zero_grad()
#Feature extraction from VGG
images, labels = batch
images = images.to(device)
labels = labels.to(device)
features = vgg_face(images)
#Sample pseudo negative sample
if (i == 0):
old_mean = torch.zeros(args.feature_dimension).to(device)
else:
old_mean = mean_vector
mean_vector = torch.mean(features, axis=0)
new_mean = args.alpha * old_mean + (1 - args.alpha) * mean_vector
sampler = torch.distributions.multivariate_normal.MultivariateNormal(new_mean,args.std_dev * torch.eye(args.feature_dimension).to(device))
noise = sampler.sample((features.shape[0],)).to(device)
classifier_input = torch.cat([features, noise], dim=0)
classifier_features, classifier_output = model(classifier_input)
classifier_ground_truth = torch.cat([torch.zeros(features.shape[0]), torch.ones(noise.shape[0])], dim=0).to(device).long()
#Loss
tpc_loss = TPC_loss_hyp(classifier_features[:features.size(0)], c=args.curvature)
classifier_loss = criterion['ce_loss'](classifier_output, classifier_ground_truth)
loss = classifier_loss + tpc_loss
loss.backward()
train_loss += loss.item()
torch.nn.utils.clip_grad_norm_(model.parameters(), 3)
optimizer.step()
i += 1
pbar.set_description(f"Epochs {num_epoch}/{args.epochs}", refresh=True)
train_loss /= i
print(f"Epoch ({num_epoch}/{args.epochs}) | Total Train Loss: {train_loss}")
### Validation ###
if (num_epoch % args.val_check_after_epoch == 0):
with torch.no_grad():
vgg_face.eval()
model.eval()
labels_list = []
predictions_list = []
val_pbar = tqdm(val_dataloader, leave=True)
for batch in val_pbar:
images, labels = batch
images = images.to(device)
labels = labels.to(device)
features = vgg_face(images)
classifier_features, classifier_output = model(features)
#Predictions and Labels
predictions = F.softmax(classifier_output, dim=1).cpu().numpy()[:, 1]
labels = labels.cpu().numpy()
labels_list.extend(labels)
predictions_list.extend(predictions)
labels_list = np.array(labels_list)
predictions_list = np.array(predictions_list)
#Metrics and save models
APCER, NPCER, ACER, EER, HTER, roc_auc, threshold, accuracy_threshold = statistics.calculate_metrics(labels_list, predictions_list)
metrics["APCER"], metrics["NPCER"], metrics["ACER"], metrics["EER"], metrics["HTER"], metrics["ROC_AUC_Score"], metrics["Threshold"], metrics["Accuracy_threshold"] = APCER, NPCER, ACER, EER, HTER, roc_auc, threshold, accuracy_threshold
print("APCER: ", metrics["APCER"]*100)
print("NPCER: ", metrics["NPCER"]*100)
print("ACER: ", metrics["ACER"]*100)
print("HTER: ", metrics["HTER"]*100)
print("ROC_AUC_Score: ", metrics["ROC_AUC_Score"])
print(f"Accuracy@{metrics['Threshold']}: ", metrics["Accuracy_threshold"]*100.0)
if args.save_for_each_val_epoch == True:
filename = f"{args.save_root}/{args.dataset}/{args.expt_name}/epoch_{num_epoch}.pth"
save_checkpoint(num_epoch, vgg_face, model, metrics, filename)
if metrics["HTER"] < best_HTER:
best_APCER = metrics["APCER"]
best_NPCER = metrics["NPCER"]
best_ACER = metrics["ACER"]
best_EER = metrics["EER"]
best_HTER = metrics["HTER"]
best_roc_auc = metrics["ROC_AUC_Score"]
best_threshold = metrics["Threshold"]
best_accuracy_threshold = metrics["Accuracy_threshold"]
filename = f"{args.save_root}/{args.dataset}/{args.expt_name}/best_epoch.pth"
save_checkpoint(num_epoch, vgg_face, model, metrics, filename)
if num_epoch == args.epochs:
filename = f"{args.save_root}/{args.dataset}/{args.expt_name}/last_epoch.pth"
save_checkpoint(num_epoch, vgg_face, model, metrics, filename)
sys.stdout = sys.__stdout__
file.close()
if __name__ == '__main__':
args = config.get_args()
train(args)