-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstep82.m
176 lines (165 loc) · 8.28 KB
/
step82.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
% Step 8.2: For a transmitting/base antenna height h1 less than 10 m
% determine the field strength for the required height and distance
% using the method given in Annex 5, § 4.2. If h1 is less than zero,
% the method given in Annex 5, § 4.3 should also be used.
% function E = step82(tabulatedValues,h1,dinf,dsup,d,path,fnom,f,Emaxvalue,t)
%
% tabulatedValues a matrix of value from a figure 1-24 of excel sheet of
% values for recommendation. Expected range from table 'B6:K84' may still
% work with different range value. results unexpected.
% h1 is the caculated h1 from h1Calc
% dinf and dsup must correspond to values in Table 1 of ITU-r p.1546 on
% page 38 otherwise NaN will be returned
% d is the distance
% path either 'Land' or 'Sea'
% fnom the nominal frequency
% f frequency
% Emaxvalue the the max field strength
% t percent time
%
% returns a field strength otherwise NaN.
function E = step82(tabulatedValues,h1,dinf,dsup,d,path,fnom,f,Emaxvalue,t)
if (h1 >= 10)
error('incorrect h1 value for step82: Greater than 10 m');
end
%look up figure values for E10 and E20
E10 = step814_815(tabulatedValues,10,dinf,dsup,d);
E20 = step814_815(tabulatedValues,20,dinf,dsup,d);
%%End lookup
if strcmp(path, 'Land')
if h1 >= 0
v = V(fnom,-10);
J = 6.9+20*log10(sqrt((v-0.1)^2+1)+v-0.1); % equ'n (12a)
Ch1neg10 = 6.03-J; % equ'n (12)
C1020 = E10 - E20; % equ'n (9b)
Ezero = E10 + 0.5*(C1020 + Ch1neg10); % equ'n (9a)
E = Ezero + 0.1*h1*(E10 - Ezero); % equ'n (9)
return
elseif h1 < 0
v = V(fnom,h1);
J = 6.9+20*log10(sqrt((v-0.1)^2+1)+v-0.1); % equ'n (12a)
E = step814_815(tabulatedValues,0,dinf,dsup,d) + (6.03-J);
return
end
elseif strcmp(path, 'Sea')
if h1 < 1
error('h1 cannot be less than 1 m for calculating sea path');
end
Dh1 = D06(f,h1,10); % equ'n (10a)
D20 = D06(f,20,10); % equ'n (10b)
if d <= Dh1
E = Emaxvalue; % equ'n (11a)
return
elseif (d >Dh1) && (d < D20)
[dinf1 dsup1] = FindDNominals(D20);
E10D20 = step814_815(tabulatedValues,10,dinf1,dsup1,D20);
E20D20 = step814_815(tabulatedValues,20,dinf1,dsup1,D20);
ED20 = E10D20+(E20D20 - E10D20)*log10(h1/10)/log10(20/10);
EDh1 = Emax(Dh1,t,'Sea');
E = (ED20 - EDh1)*log10(d/Dh1)/log10(D20/Dh1);% equ'n (11b)
return
elseif d >= D20
E1 = E10+(E20-E10)*log10(h1/10)/log(20/10);
v = V(fnom,-10);
J = 6.9+20*log10(sqrt((v-0.1)^2+1)+v-0.1); % equ'n (12a)
Ch1neg10 = 6.03-J; % equ'n (12)
C1020 = E10 - E20; % equ'n (9b)
Ezero = E10 + 0.5*(C1020 + Ch1neg10); % equ'n (9a)
E2 = Ezero + 0.1*h1*(E10 - Ezero); % equ'n (9)
Fs = (d - D20)/d;
E = E1*(1-Fs)+E2*Fs; % equ'n (11c)
return
end %end if d <= Dh1
end %end if path land
error('no path selected in step82');
end%% end function
% 4.2 Transmitting/base antenna height, h1, in the range 0 m to 10 m
% The method when h1 is less than 10 m depends on whether the path is over
% land or sea.
% For a land path:
% For a land path the field strength at the required distance d km
% for 0 < h1 < 10 m is calculated using:
% E = Ezero +0.1*h1(E10 -Ezero ) dB(?V/m) (9)
% where:
% Ezero = E10 +0.5(C1020 +Ch1neg10 ) dB(?V/m) (9a)
% C1020 = E10 - E20 dB (9b)
% Ch1neg10: the correction Ch1 in dB calculated using equation (12)
% in § 4.3 below at the required distance for h1 = -10 m
% E10 and E20: the field strengths in dB(?V/m) calculated according
% to § 4.1 above at the required distance for h1 = 10m and h1 = 20m
% respectively.
% Note that the corrections C1020 and Ch1neg10 should both evaluate
% to negative quantities.
% For a sea path:
% Note that for a sea path, h1 should not be less than 1 m. The
% procedure requires the distance at which the path has 0.6 of the
% first Fresnel zone just unobstructed by the sea surface. This is
% given by:
% Dh1 =D06 ( f , h1,10) km (10a)
% where f is the nominal frequency (MHz) and the function D06 is
% defined in § 17.
% If d > Dh1 it will be necessary to also calculate the 0.6 Fresnel
% clearance distance for a sea path where the transmitting/base
% antenna height is 20 m, given by:
% D20 =D06 ( f , 20,10) km (10b)
% The field strength for the required distance, d, and value of h1,
% is then given by:
% E = Emax dB(?V/m) for d ? Dh1 (11a)
% = EDh1 =(ED20 ?EDh1) log(d /Dh1)/log(D20 /Dh1) dB(?V/m)
% for Dh1 < d < D20 (11b)
% = E?(1?Fs )+E??Fs dB(?V/m) for d ? D20 (11c)
% where:
% Emax : maximum field strength at the required distance given in§2
% EDh1 : Emax for distance Dh1 as given in § 2
% ED20 = E10(D20) + (E20(D20) ? E10(D20)) log (h1/10)/log (20/10)
% E10(x) : field strength for h1 = 10 m interpolated for distance x
% E' = E10(d) + (E20(d) ? E10(d)) log (h1/10)/log (20/10)
% E??: field strength for distance d calculated using equation (9)
% FS = (d ? D20)/d.
% 4.3 Negative values of transmitting/base antenna height, h1
% For land paths it is possible for the effective transmitting/base antenna
% height heff to have a negative value, since it is based on the average
% terrain height at distances from 3 km to 15 km. Thus h1 may be negative.
% In this case, the effect of diffraction by nearby terrain obstacles
% should be taken into account.
% The procedure for negative values of h1 is to obtain the field strength
% for h1 = 0 as described in § 4.2, and to add a correction Ch1 calculated
% as follows.
% The effect of diffraction loss is taken into account by a correction,
% Ch1, given by cases a) or b) as follows:
% a) In the case that a terrain database is available and the potential for
% discontinuities at the transition around h1 = 0 is of no concern in the
% application of this Recommendation, the terrain clearance angle, ?eff1,
% from the transmitting/base antenna should be calculated as the elevation
% angle of a line which just clears all terrain obstructions up to 15 km
% from the transmitting/base antenna in the direction of (but not going
% beyond) the receiving/mobile antenna. This clearance angle, which will
% have a positive value, should be used instead of ?tca in equation (30c)
% in the terrain clearance angle correction method given in § 11 to obtain
% Ch1. Note that using this method can result in a discontinuity in field
% strength at the transition around h1 = 0.
%% This implementation is 4.3 a) is not accounted for.
% b) In the case where a terrain database is not available or where a
% terrain database is available, but the method must never produce a
% discontinuity in the field strength at the transition around h1 = 0, the
% (positive) effective terrain clearance angle, ?eff2, may be estimated
% assuming an obstruction of height h1 at a distance of 9 km from the
% transmitting/base antenna. Note that this is used for all path lengths,
% even when less than 9 km. That is, the ground is regarded as
% approximating an irregular wedge over the range 3 km to 15 km from the
% transmitting/base antenna, with its mean value occurring at 9 km, as
% indicated in Fig. 25. This method takes less explicit account of terrain
% variations, but it also guarantees that there is no discontinuity in
% field strength at the transition around h1 = 0. The correction to be
% added to the field strength in this case is calculated using:
% Ch1 =6.03? J (?) dB (12)
% where:
% J(?)= 6.9+20*log10(sqrt((v-0.1)^2+1)+v-0.1) (12a)
% ? =K?*?eff2 (12b)
% and
% ?eff 2 =arctan(?h1/9000) degrees (12c)
% K? = 1.35 for 100 MHz
% K? = 3.31 for 600 MHz
% K? = 6.00 for 2000 MHz
% The above correction, which is always less than zero, is added to the
% field strength obtained for h1 = 0.