@@ -13,7 +13,7 @@ Learn Deep Learning with PyTorch
13
13
书中已经详细给出了如何基于Anaconda配置python环境,以及PyTorch的安装,如果你使用自己的电脑,并且有Nvidia的显卡,那么你可以愉快地进入深度学习的世界了,如果你没有Nvidia的显卡,那么我们需要一个云计算的平台来帮助我们学习深度学习之旅。[ 如何配置aws计算平台] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/aws.md )
14
14
15
15
16
- ** 以下的课程目录和书中目录有出入,因为内容正在不断更新,所有的内容更新完成会更迭到书的第二版中 !**
16
+ ** 以下的课程目录和书中目录有出入,因为内容正在更新到第二版,第二版即将上线! !**
17
17
## 课程目录
18
18
### part1: 深度学习基础
19
19
- Chapter 2: PyTorch基础
@@ -28,6 +28,14 @@ Learn Deep Learning with PyTorch
28
28
- [ 多层神经网络,Sequential 和 Module] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/nn-sequential-module.ipynb )
29
29
- [ 深度神经网络] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/deep-nn.ipynb )
30
30
- [ 参数初始化方法] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/param_initialize.ipynb )
31
+
32
+ - 优化算法
33
+ - [ SGD] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb )
34
+ - [ 动量法] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb )
35
+ - [ Adagrad] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb )
36
+ - [ RMSProp] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb )
37
+ - [ Adadelta] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb )
38
+ - [ Adam] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb )
31
39
32
40
- Chapter 4: 卷积神经网络
33
41
- [ PyTorch 中的卷积模块] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/basic_conv.ipynb )
@@ -42,42 +50,44 @@ Learn Deep Learning with PyTorch
42
50
- [ 学习率衰减] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/lr-decay.ipynb )
43
51
44
52
- Chapter 5: 循环神经网络
45
- - LSTM 和 GRU
46
- - 使用RNN进行时间序列分析
47
- - 使用RNN进行图像分类
48
- - Word Embedding和N-Gram模型
49
- - Seq-LSTM做词性预测
53
+ - [ 循环神经网络模块:LSTM 和 GRU] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter5_RNN/pytorch-rnn.ipynb )
54
+ - [ 使用 RNN 进行图像分类] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter5_RNN/rnn-for-image.ipynb )
55
+ - 使用 RNN 进行时间序列分析
56
+ - 自然语言处理的应用:
57
+ - Word Embedding
58
+ - N-Gram 模型
59
+ - Seq-LSTM 做词性预测
50
60
51
61
- Chapter 6: 生成对抗网络
52
62
- 自动编码器
53
63
- 变分自动编码器
54
64
- 生成对抗网络的介绍
55
65
- 深度卷积对抗网络(DCGANs)
56
66
57
- - Chapter 7: PyTorch高级
58
- - [ tensorboard 可视化 ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/tensorboard.ipynb )
59
- - 优化算法
60
- - [ SGD ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/sgd.ipynb )
61
- - [ 动量法 ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/momentum.ipynb )
62
- - [ Adagrad ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/adagrad.ipynb )
63
- - [ RMSProp ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/rmsprop.ipynb )
64
- - [ Adadelta ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch -Advances/optimizer/adadelta .ipynb )
65
- - [ Adam ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/adam.ipynb )
66
- - [ 灵活的数据读取介绍] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch -Advances/data-io.ipynb )
67
+ - Chapter 7: 深度增强学习
68
+ - 深度增强学习的介绍
69
+ - Policy gradient
70
+ - Actor-critic gradient
71
+ - Deep Q-networks
72
+
73
+ - Chapter 8: PyTorch高级
74
+ - [ tensorboard 可视化 ] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter8_PyTorch -Advances/tensorboard .ipynb )
75
+
76
+ - [ 灵活的数据读取介绍] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter8_PyTorch -Advances/data-io.ipynb )
67
77
- autograd.function 的介绍
68
78
- 数据并行和多 GPU
69
79
- PyTorch 的分布式应用
70
80
- 使用 ONNX 转化为 Caffe2 模型
71
81
- PyTorch 写 C 扩展
72
82
73
83
### part2: 深度学习的应用
74
- - Chapter 8 : 计算机视觉
75
- - [ Fine-tuning: 通过微调进行迁移学习] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter7_Computer -Vision/fine-tune.ipynb )
84
+ - Chapter 9 : 计算机视觉
85
+ - [ Fine-tuning: 通过微调进行迁移学习] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter9_Computer -Vision/fine-tune.ipynb )
76
86
- 语义分割: 通过 FCN 实现像素级别的分类
77
87
- Neural Transfer: 通过卷积网络实现风格迁移
78
88
- Deep Dream: 探索卷积网络眼中的世界
79
89
80
- - Chapter 9 : 自然语言处理
90
+ - Chapter 10 : 自然语言处理
81
91
- char rnn 实现文本生成
82
92
- Image Caption: 实现图片字幕生成
83
93
- seq2seq 实现机器翻译
0 commit comments