|
25 | 25 | },
|
26 | 26 | {
|
27 | 27 | "cell_type": "code",
|
28 |
| - "execution_count": 6, |
| 28 | + "execution_count": 1, |
29 | 29 | "metadata": {
|
30 | 30 | "collapsed": true
|
31 | 31 | },
|
|
38 | 38 | },
|
39 | 39 | {
|
40 | 40 | "cell_type": "code",
|
41 |
| - "execution_count": 13, |
| 41 | + "execution_count": 2, |
42 | 42 | "metadata": {
|
43 | 43 | "collapsed": true
|
44 | 44 | },
|
|
56 | 56 | },
|
57 | 57 | {
|
58 | 58 | "cell_type": "code",
|
59 |
| - "execution_count": 14, |
| 59 | + "execution_count": 3, |
60 | 60 | "metadata": {
|
61 | 61 | "collapsed": true
|
62 | 62 | },
|
|
69 | 69 | },
|
70 | 70 | {
|
71 | 71 | "cell_type": "code",
|
72 |
| - "execution_count": 15, |
73 |
| - "metadata": { |
74 |
| - "collapsed": false |
75 |
| - }, |
| 72 | + "execution_count": 4, |
| 73 | + "metadata": {}, |
76 | 74 | "outputs": [
|
77 | 75 | {
|
78 | 76 | "name": "stdout",
|
79 | 77 | "output_type": "stream",
|
80 | 78 | "text": [
|
81 | 79 | "Parameter containing:\n",
|
82 |
| - "-0.0221 -0.0171 0.1221 ... -0.0452 -0.1715 -0.0637\n", |
83 |
| - "-0.0922 -0.1111 0.0822 ... 0.0316 0.1020 -0.0585\n", |
84 |
| - "-0.0830 0.1037 -0.0572 ... -0.1465 -0.1049 -0.0566\n", |
| 80 | + " 0.1236 -0.1731 -0.0479 ... 0.0031 0.0784 0.1239\n", |
| 81 | + " 0.0713 0.1615 0.0500 ... -0.1757 -0.1274 -0.1625\n", |
| 82 | + " 0.0638 -0.1543 -0.0362 ... 0.0316 -0.1774 -0.1242\n", |
85 | 83 | " ... ⋱ ... \n",
|
86 |
| - " 0.1485 0.1137 0.1745 ... 0.0073 0.0887 0.1143\n", |
87 |
| - " 0.1634 -0.1478 0.0930 ... 0.1418 -0.0501 0.1266\n", |
88 |
| - " 0.0943 -0.1595 -0.1742 ... -0.1531 0.0786 -0.1594\n", |
| 84 | + " 0.1551 0.1772 0.1537 ... 0.0730 0.0950 0.0627\n", |
| 85 | + " 0.0495 0.0896 0.0243 ... -0.1302 -0.0256 -0.0326\n", |
| 86 | + "-0.1193 -0.0989 -0.1795 ... 0.0939 0.0774 -0.0751\n", |
89 | 87 | "[torch.FloatTensor of size 40x30]\n",
|
90 | 88 | "\n"
|
91 | 89 | ]
|
|
104 | 102 | },
|
105 | 103 | {
|
106 | 104 | "cell_type": "code",
|
107 |
| - "execution_count": 16, |
| 105 | + "execution_count": 5, |
108 | 106 | "metadata": {
|
109 | 107 | "collapsed": true
|
110 | 108 | },
|
|
116 | 114 | },
|
117 | 115 | {
|
118 | 116 | "cell_type": "code",
|
119 |
| - "execution_count": 17, |
120 |
| - "metadata": { |
121 |
| - "collapsed": false |
122 |
| - }, |
| 117 | + "execution_count": 6, |
| 118 | + "metadata": {}, |
123 | 119 | "outputs": [
|
124 | 120 | {
|
125 | 121 | "name": "stdout",
|
126 | 122 | "output_type": "stream",
|
127 | 123 | "text": [
|
128 | 124 | "Parameter containing:\n",
|
129 |
| - " 4.6904 3.5478 4.0254 ... 3.6078 4.6897 4.8285\n", |
130 |
| - " 4.6349 3.4475 4.8485 ... 3.8712 3.9396 4.7797\n", |
131 |
| - " 3.0177 3.4870 4.5741 ... 4.6718 4.2548 4.6343\n", |
| 125 | + " 4.5768 3.6175 3.3098 ... 4.7374 4.0164 3.3037\n", |
| 126 | + " 4.1809 3.5624 3.1452 ... 3.0305 4.4444 4.1058\n", |
| 127 | + " 3.5277 4.3712 3.7859 ... 3.5760 4.8559 4.3252\n", |
132 | 128 | " ... ⋱ ... \n",
|
133 |
| - " 3.3116 3.2907 4.5550 ... 3.5882 4.4668 3.6532\n", |
134 |
| - " 4.2998 4.6337 3.8836 ... 3.1220 4.0567 4.3605\n", |
135 |
| - " 4.3862 4.5433 4.1909 ... 4.2792 4.7513 3.7076\n", |
| 129 | + " 4.8983 3.9855 3.2842 ... 4.7683 4.7590 3.3498\n", |
| 130 | + " 4.9168 4.5723 3.5870 ... 3.2032 3.9842 3.2484\n", |
| 131 | + " 4.2532 4.6352 4.4857 ... 3.7543 3.9885 4.4211\n", |
136 | 132 | "[torch.DoubleTensor of size 40x30]\n",
|
137 | 133 | "\n"
|
138 | 134 | ]
|
|
151 | 147 | },
|
152 | 148 | {
|
153 | 149 | "cell_type": "code",
|
154 |
| - "execution_count": 18, |
155 |
| - "metadata": { |
156 |
| - "collapsed": false |
157 |
| - }, |
| 150 | + "execution_count": 7, |
| 151 | + "metadata": {}, |
158 | 152 | "outputs": [],
|
159 | 153 | "source": [
|
160 | 154 | "for layer in net1:\n",
|
|
188 | 182 | },
|
189 | 183 | {
|
190 | 184 | "cell_type": "code",
|
191 |
| - "execution_count": 28, |
| 185 | + "execution_count": 8, |
192 | 186 | "metadata": {
|
193 | 187 | "collapsed": true
|
194 | 188 | },
|
|
202 | 196 | " nn.ReLU()\n",
|
203 | 197 | " )\n",
|
204 | 198 | " \n",
|
205 |
| - " self.l1[0].weight.data = torch.randn(30, 40) # 直接对某一层初始化\n", |
| 199 | + " self.l1[0].weight.data = torch.randn(40, 30) # 直接对某一层初始化\n", |
206 | 200 | " \n",
|
207 | 201 | " self.l2 = nn.Sequential(\n",
|
208 | 202 | " nn.Linear(40, 50),\n",
|
|
223 | 217 | },
|
224 | 218 | {
|
225 | 219 | "cell_type": "code",
|
226 |
| - "execution_count": 29, |
| 220 | + "execution_count": 9, |
227 | 221 | "metadata": {
|
228 | 222 | "collapsed": true
|
229 | 223 | },
|
|
234 | 228 | },
|
235 | 229 | {
|
236 | 230 | "cell_type": "code",
|
237 |
| - "execution_count": 30, |
238 |
| - "metadata": { |
239 |
| - "collapsed": false |
240 |
| - }, |
| 231 | + "execution_count": 10, |
| 232 | + "metadata": {}, |
241 | 233 | "outputs": [
|
242 | 234 | {
|
243 | 235 | "name": "stdout",
|
|
266 | 258 | },
|
267 | 259 | {
|
268 | 260 | "cell_type": "code",
|
269 |
| - "execution_count": 31, |
270 |
| - "metadata": { |
271 |
| - "collapsed": false |
272 |
| - }, |
| 261 | + "execution_count": 11, |
| 262 | + "metadata": {}, |
273 | 263 | "outputs": [
|
274 | 264 | {
|
275 | 265 | "name": "stdout",
|
|
327 | 317 | },
|
328 | 318 | {
|
329 | 319 | "cell_type": "code",
|
330 |
| - "execution_count": 33, |
331 |
| - "metadata": { |
332 |
| - "collapsed": false |
333 |
| - }, |
| 320 | + "execution_count": 12, |
| 321 | + "metadata": {}, |
334 | 322 | "outputs": [],
|
335 | 323 | "source": [
|
336 | 324 | "for layer in net2.modules():\n",
|
|
356 | 344 | },
|
357 | 345 | {
|
358 | 346 | "cell_type": "code",
|
359 |
| - "execution_count": 34, |
| 347 | + "execution_count": 13, |
360 | 348 | "metadata": {
|
361 | 349 | "collapsed": true
|
362 | 350 | },
|
|
367 | 355 | },
|
368 | 356 | {
|
369 | 357 | "cell_type": "code",
|
370 |
| - "execution_count": 38, |
371 |
| - "metadata": { |
372 |
| - "collapsed": false |
373 |
| - }, |
| 358 | + "execution_count": 14, |
| 359 | + "metadata": {}, |
374 | 360 | "outputs": [
|
375 | 361 | {
|
376 | 362 | "name": "stdout",
|
377 | 363 | "output_type": "stream",
|
378 | 364 | "text": [
|
379 | 365 | "Parameter containing:\n",
|
380 |
| - " 0.2051 -0.4551 0.7049 ... 0.5223 -0.7658 -0.1899\n", |
381 |
| - " 0.2562 0.2797 0.0012 ... -0.5278 -0.4887 -0.8263\n", |
382 |
| - " 0.4582 -0.1433 0.5009 ... 0.1000 -0.5663 0.1605\n", |
| 366 | + " 0.8453 0.2891 -0.5276 ... -0.1530 -0.4474 -0.5470\n", |
| 367 | + "-0.1983 -0.4530 -0.1950 ... 0.4107 -0.4889 0.3654\n", |
| 368 | + " 0.9149 -0.5641 -0.6594 ... 0.0734 0.1354 -0.4152\n", |
383 | 369 | " ... ⋱ ... \n",
|
384 |
| - " 0.8715 0.4053 0.3679 ... -0.4733 -0.6270 -0.3325\n", |
385 |
| - "-0.1898 0.6608 0.1111 ... 0.2294 0.2603 -0.0200\n", |
386 |
| - "-0.3035 0.1876 -0.5422 ... 0.0505 0.6244 -0.2368\n", |
| 370 | + "-0.4718 -0.5125 -0.5572 ... 0.0824 -0.6551 0.0840\n", |
| 371 | + "-0.2374 -0.0036 0.6497 ... 0.7856 -0.1367 -0.8795\n", |
| 372 | + " 0.0774 0.2609 -0.2358 ... -0.8196 0.1696 0.5976\n", |
387 | 373 | "[torch.DoubleTensor of size 40x30]\n",
|
388 | 374 | "\n"
|
389 | 375 | ]
|
|
395 | 381 | },
|
396 | 382 | {
|
397 | 383 | "cell_type": "code",
|
398 |
| - "execution_count": 39, |
399 |
| - "metadata": { |
400 |
| - "collapsed": false |
401 |
| - }, |
| 384 | + "execution_count": 15, |
| 385 | + "metadata": {}, |
402 | 386 | "outputs": [
|
403 | 387 | {
|
404 | 388 | "data": {
|
405 | 389 | "text/plain": [
|
406 | 390 | "Parameter containing:\n",
|
407 |
| - "-0.0449 -0.2140 0.2820 ... -0.2266 0.0365 -0.1897\n", |
408 |
| - "-0.0313 0.1128 0.1789 ... -0.1731 0.0590 -0.1085\n", |
409 |
| - "-0.0347 -0.1429 -0.1646 ... 0.0212 0.1731 -0.0251\n", |
| 391 | + "-0.2114 0.2704 -0.2186 ... 0.1727 0.2158 0.0775\n", |
| 392 | + "-0.0736 -0.0565 0.0844 ... 0.1793 0.2520 -0.0047\n", |
| 393 | + " 0.1331 -0.1843 0.2426 ... -0.2199 -0.0689 0.1756\n", |
410 | 394 | " ... ⋱ ... \n",
|
411 |
| - " 0.0902 -0.1555 0.0562 ... -0.0109 -0.2192 -0.1540\n", |
412 |
| - "-0.1491 -0.2610 -0.2453 ... 0.2201 0.2257 0.1047\n", |
413 |
| - " 0.0297 0.1414 -0.0139 ... -0.1209 -0.0193 -0.1731\n", |
| 395 | + " 0.2751 -0.1404 0.1225 ... 0.1926 0.0175 -0.2099\n", |
| 396 | + " 0.0970 -0.0733 -0.2461 ... 0.0605 0.1915 -0.1220\n", |
| 397 | + " 0.0199 0.1283 -0.1384 ... -0.0344 -0.0560 0.2285\n", |
414 | 398 | "[torch.DoubleTensor of size 40x30]"
|
415 | 399 | ]
|
416 | 400 | },
|
417 |
| - "execution_count": 39, |
| 401 | + "execution_count": 15, |
418 | 402 | "metadata": {},
|
419 | 403 | "output_type": "execute_result"
|
420 | 404 | }
|
|
425 | 409 | },
|
426 | 410 | {
|
427 | 411 | "cell_type": "code",
|
428 |
| - "execution_count": 40, |
429 |
| - "metadata": { |
430 |
| - "collapsed": false |
431 |
| - }, |
| 412 | + "execution_count": 16, |
| 413 | + "metadata": {}, |
432 | 414 | "outputs": [
|
433 | 415 | {
|
434 | 416 | "name": "stdout",
|
435 | 417 | "output_type": "stream",
|
436 | 418 | "text": [
|
437 | 419 | "Parameter containing:\n",
|
438 |
| - "-0.0449 -0.2140 0.2820 ... -0.2266 0.0365 -0.1897\n", |
439 |
| - "-0.0313 0.1128 0.1789 ... -0.1731 0.0590 -0.1085\n", |
440 |
| - "-0.0347 -0.1429 -0.1646 ... 0.0212 0.1731 -0.0251\n", |
| 420 | + "-0.2114 0.2704 -0.2186 ... 0.1727 0.2158 0.0775\n", |
| 421 | + "-0.0736 -0.0565 0.0844 ... 0.1793 0.2520 -0.0047\n", |
| 422 | + " 0.1331 -0.1843 0.2426 ... -0.2199 -0.0689 0.1756\n", |
441 | 423 | " ... ⋱ ... \n",
|
442 |
| - " 0.0902 -0.1555 0.0562 ... -0.0109 -0.2192 -0.1540\n", |
443 |
| - "-0.1491 -0.2610 -0.2453 ... 0.2201 0.2257 0.1047\n", |
444 |
| - " 0.0297 0.1414 -0.0139 ... -0.1209 -0.0193 -0.1731\n", |
| 424 | + " 0.2751 -0.1404 0.1225 ... 0.1926 0.0175 -0.2099\n", |
| 425 | + " 0.0970 -0.0733 -0.2461 ... 0.0605 0.1915 -0.1220\n", |
| 426 | + " 0.0199 0.1283 -0.1384 ... -0.0344 -0.0560 0.2285\n", |
445 | 427 | "[torch.DoubleTensor of size 40x30]\n",
|
446 | 428 | "\n"
|
447 | 429 | ]
|
|
472 | 454 | ],
|
473 | 455 | "metadata": {
|
474 | 456 | "kernelspec": {
|
475 |
| - "display_name": "mx", |
| 457 | + "display_name": "Python 3", |
476 | 458 | "language": "python",
|
477 |
| - "name": "mx" |
| 459 | + "name": "python3" |
478 | 460 | },
|
479 | 461 | "language_info": {
|
480 | 462 | "codemirror_mode": {
|
|
486 | 468 | "name": "python",
|
487 | 469 | "nbconvert_exporter": "python",
|
488 | 470 | "pygments_lexer": "ipython3",
|
489 |
| - "version": "3.6.0" |
| 471 | + "version": "3.6.3" |
490 | 472 | }
|
491 | 473 | },
|
492 | 474 | "nbformat": 4,
|
|
0 commit comments