-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlightMetricFunctions.js
759 lines (655 loc) · 21.9 KB
/
lightMetricFunctions.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
function rdivide(a, b){
if (a.length != b.length){
console.log(a + " and " + b + " are not the same length and can not be rdivided.");
return;
}
var ret = [];
for(var i = 0; i < a.length; i ++){
ret[i] = a[i]/b[i];
}
return ret;
}
function elementWiseDivision(a, b){
if (b.length != 1){
console.log(b + "'s length is not equal to 1 and element-wise division cannot be performed.");
}
var ret = [];
for (var i = 0; i < a.length; i++){
ret[i] = a[i]/b;
}
return ret;
}
function elementWiseMultiplication(a, b){
if (b.isNaN){
console.log(b + "'s length is not equal to 1 and element-wise multiplication cannot be performed.");
}
var ret = [];
for (var i = 0; i < a.length; i++){
ret[i] = a[i]*b;
}
return ret;
}
// CCT
function CCTcalc(spd){
// Load values
var cie = cie31by1();
var isoTempLines = isoTempLinesNewestFine23Sep05();
var deltaWavelength = createDelta(spd.wavelength);
// Interpolate bar values
var xbar = interp1(cie.wavelength, cie.xbar, spd.wavelength, 0);
var ybar = interp1(cie.wavelength, cie.ybar, spd.wavelength, 0);
var zbar = interp1(cie.wavelength, cie.zbar, spd.wavelength, 0);
// Trapz bar values
var X = sumproduct(spd.value, arrayMul(deltaWavelength, xbar));
var Y = sumproduct(spd.value, arrayMul(deltaWavelength, ybar));
var Z = sumproduct(spd.value, arrayMul(deltaWavelength, zbar));
// Base math
x = X/(X+Y+Z);
y = Y/(X+Y+Z);
u = 4*x/(-2*x+12*y+3);
v = 6*y/(-2*x+12*y+3);
// Find adjacent lines to (us,vs)
var index = 0;
var d1 = ((v-isoTempLines.vt[1]) - isoTempLines.tt[1]*(u-isoTempLines.ut[1]))/Math.sqrt(1+isoTempLines.tt[1]*isoTempLines.tt[1]);
var d2;
for(var i = 1;i < isoTempLines.T.length; i++){
d2 = ((v-isoTempLines.vt[i]) - isoTempLines.tt[i]*(u-isoTempLines.ut[i]))/Math.sqrt(1+isoTempLines.tt[i]*isoTempLines.tt[i]);
if (d1/d2 < 0){
index = i;
break;
}else{
d1 = d2;
}
}
// Calc Tc
var Tc;
if(index == 0){
Tc = NaN; //-1;
}else{
Tc = 1/(1/isoTempLines.T[index-1]+d1/(d1-d2)*(1/isoTempLines.T[index]-1/isoTempLines.T[index-1]));
}
return Tc;
}
// CCT
// CLA
function CLAcalc(spd){
var arod1 = 2.30;
var arod2 = 1.60;
var a_bminusY = 0.21;
var g1 = 1;
var g2 = 0.16;
var k = 0.2616;
var rodSat = 6.5215;
var wavelengths = spd.wavelength;
var values = spd.value;
var efs = efficienyFunctions(wavelengths, thickness);
var deltaWavelength = createDelta(wavelengths);
var vlambda = sumproduct(values, arrayMul(deltaWavelength, efs.Vlambda));
var vprime = sumproduct(values, arrayMul(deltaWavelength, efs.Vprime));
var scone = sumproduct(values, arrayMul(deltaWavelength, efs.Scone));
var melanopsin = sumproduct(values, arrayMul(deltaWavelength, efs.Melanopsin));
// var macula = {
// wavelength: [4.00E+02,4.05E+02,4.10E+02,4.15E+02,4.20E+02,4.25E+02,4.30E+02,4.35E+02,4.40E+02,4.45E+02,4.50E+02,4.55E+02,4.60E+02,4.65E+02,4.70E+02,4.75E+02,4.80E+02,4.85E+02,4.90E+02,4.95E+02,5.00E+02,5.05E+02,5.10E+02,5.15E+02,5.20E+02,5.25E+02,5.30E+02,5.35E+02,5.40E+02,5.45E+02,5.50E+02,5.55E+02,5.60E+02,5.65E+02,5.70E+02,5.75E+02,5.80E+02,5.85E+02,5.90E+02,5.95E+02,6.00E+02,6.05E+02,6.10E+02,6.15E+02,6.20E+02,6.25E+02,6.30E+02,6.35E+02,6.40E+02,6.45E+02,6.50E+02,6.55E+02,6.60E+02,6.65E+02,6.70E+02,6.75E+02,6.80E+02,6.85E+02,6.90E+02,6.95E+02,7.00E+02,7.05E+02,7.10E+02,7.15E+02,7.20E+02,7.25E+02,7.30E+02],
// value: [2.24E-01,2.44E-01,2.64E-01,2.83E-01,3.14E-01,3.53E-01,3.83E-01,4.00E-01,4.17E-01,4.40E-01,4.66E-01,4.90E-01,5.00E-01,4.83E-01,4.62E-01,4.38E-01,4.37E-01,4.36E-01,4.27E-01,4.04E-01,3.51E-01,2.83E-01,2.14E-01,1.55E-01,9.60E-02,6.80E-02,4.00E-02,2.85E-02,1.70E-02,1.30E-02,9.00E-03,8.50E-03,8.00E-03,6.50E-03,5.00E-03,4.50E-03,4.00E-03,2.00E-03,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00,0.00E+00]
// };
// var macularT = arrayPow(10,arrayScalar(macula.value,-_thickness));
// var macularTi = interp1(macula.wavelength,macularT,wavelengths,1);
var rod_mel = vprime/(vlambda + g1*scone);
var rod_bminusY = vprime/(vlambda + g2*scone);
var bminusY = scone-k*vlambda;
var cs1 = melanopsin;
if (cs1 < 0) {
cs1 = 0;
}
var cs2,cs;
var rod = arod2 * rod_bminusY * (1-Math.exp(-vprime/rodSat));
var rodmel = arod1 *rod_mel * (1-Math.exp(-vprime/rodSat));
if (bminusY >= 0){
cs2 = a_bminusY*bminusY;
if (cs2 < 0){
cs2 = 0;
}
var cs = (cs1 + cs2 - rod - rodmel);
}else{
cs = (cs1 - rodmel);
}
if (cs < 0){
cs = 0;
}
cla = cs*1548;
return cla;
}
// function CLAcalc(spd, thickness){
// var cs;
//
// var wavelength = spd.wavelength;
// var value = spd.value;
//
// var efs = efficienyFunctions(wavelength, thickness);
// var deltaWavelength = createDelta(wavelength);
//
// var spdScone = sumproduct(value, arrayMul(deltaWavelength, efs.Scone));
// var spdVlambda = sumproduct(value, arrayMul(deltaWavelength, efs.Vlambda));
// console.log(spdVlambda);
// var spdMelanopsin = sumproduct(value, arrayMul(deltaWavelength, efs.Melanopsin));
// var spdVprime = sumproduct(value, arrayMul(deltaWavelength, efs.Vprime));
//
// var rodSat1 = 35000;
// var retinalE = [1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000];
// var pupilDiam = [7.1, 7, 6.9, 6.8, 6.7, 6.5, 6.3, 5.65, 5, 3.65, 2.3];
// var diam = interp1(retinalE,pupilDiam,rodSat1,0);
// var rodSat = rodSat1/(Math.pow(diam,2)/4*Math.PI)*Math.PI/1700;
//
// var a1 = 1;
// var b1 = 0.0;
// var a2 = 0.7000;
// var b2 = 0.0;
// var k = 0.2616;//0.2883;//0.2616;
// var a3 = 3.3000;
//
// if((spdScone - k*spdVlambda) > 0){
// var cs1 = a1*spdMelanopsin - b1;
// if(cs1 < 0){
// cs1 = 0;
// }
// var cs2 = a2*(spdScone - k*spdVlambda) - b2;
// if(cs2 < 0){
// cs2 = 0;
// }
// var rod = a3*(1-Math.exp(-spdVprime/rodSat));
// cs = (cs1 + cs2 - rod);
// if(cs < 0){
// cs = 0;
// }
// }else{
// cs = a1*spdMelanopsin-b1;
// if(cs < 0){
// cs = 0;
// }
// }
// var cla = cs * 1547.9;
//
// return cla;
// }
function cla2cs(cla){
return 0.7*(1-(1/(1+Math.pow((cla * _t*_d/355.7),1.1026))));
}
function cs2cla(cs){
return (355.7/(_t*_d))*Math.pow((1/(1-(cs/0.7))-1),(1/1.1026));
}
function zeros(n){
var result = [];
for(var i = 0;i < n;i++){
result[i] = 0;
}
return result;
}
// CLA
// Blackbody Spectra
function blackbodySpectra23Sep05(Tc, wave){
/* Black Body Spectra
Calculates the Planktian black body spectrum of given color temperature, Tc.
% Function arguements are:
% Tc - color temperature in Kelvin
% wave - column vector specifiying the wavelength values at which the spd is evaluated */
// 2002 CODATA recommended values
var h = 6.6260693e-34;
var c = 299792458;
var k = 1.3806505e-23;
var c1 = 2*Math.PI*h*Math.pow(c,2);
var c2 = h*c/k;
var e9 = 1e-9;
//var spdBlackBody = arrayDiv(arrayScalar(arrayBase(arrayScalar(wave,e9),-5),c1),(Math.exp(arrayScalar(arrayInverse(arrayScalar(arrayScalar(wave,e9),Tc)),c2) - 1)));
var calc1 = arrayScalar(arrayBase(arrayScalar(wave,e9),-5),c1);
var calc2 = arrayAdd2(arrayPow(Math.exp(1),arrayScalar(arrayInverse(arrayScalar(arrayScalar(wave,e9),Tc)),c2)), - 1);
var spdBlackBody = arrayDiv(calc1, calc2);
return spdBlackBody;
}
// Blackbody Spectra
// CIE Day Spectra
function cieDaySpectra23Sep05(Tc,wave){
var v = NaN;
if(Tc <= 25000){
var cieDaySn = {
wavelength: [300,310,320,330,340,350,360,370,380,390,400,410,420,430,440,450,460,470,480,490,500,510,520,530,540,550,560,570,580,590,600,610,620,630,640,650,660,670,680,690,700,710,720,730,740,750,760,770,780,790,800,810,820,830],
S0: [0.04,6,29.6,55.3,57.3,61.8,61.5,68.8,63.4,65.8,94.8,104.8,105.9,96.8,113.9,125.6,125.5,121.3,121.3,113.5,113.1,110.8,106.5,108.8,105.3,104.4,100,96,95.1,89.1,90.5,90.3,88.4,84,85.1,81.9,82.6,84.9,81.3,71.9,74.3,76.4,63.3,71.7,77,65.2,47.7,68.6,65,66,61,53.3,58.9,61.9],
S1: [0.02,4.5,22.4,42,40.6,41.6,38,42.4,38.5,35,43.4,46.3,43.9,37.1,36.7,35.9,32.6,27.9,24.3,20.1,16.2,13.2,8.6,6.1,4.2,1.9,0,-1.6,-3.5,-3.5,-5.8,-7.2,-8.6,-9.5,-10.9,-10.7,-12,-14,-13.6,-12,-13.3,-12.9,-10.6,-11.6,-12.2,-10.2,-7.8,-11.2,-10.4,-10.6,-9.7,-8.3,-9.3,-9.8],
S2: [0,2,4,8.5,7.8,6.7,5.3,6.1,3,1.2,-1.1,-0.5,-0.7,-1.2,-2.6,-2.9,-2.8,-2.6,-2.6,-1.8,-1.5,-1.3,-1.2,-1,-0.5,-0.3,0,0.2,0.5,2.1,3.2,4.1,4.7,5.1,6.7,7.3,8.6,9.8,10.2,8.3,9.6,8.5,7,7.6,8,6.7,5.2,7.4,6.8,7,6.4,5.5,6.1,6.5]
};
//var cieDaySn = cieDaySn();
var xd;
if(Tc <= 7000){
xd = -4.6070e9 / Math.pow(Tc,3) + 2.9678e6 / Math.pow(Tc,2) + 0.09911e3 / Tc + 0.244063;
}else{
xd = -2.0064e9 / Math.pow(Tc,3) + 1.9018e6 / Math.pow(Tc,2) + 0.24748e3 / Tc + 0.237040;
}
var yd = -3.000*xd*xd + 2.870*xd - 0.275;
var M1 = (-1.3515 - 1.7703*xd + 5.9114*yd) / (0.0241 + 0.2562*xd - 0.7341*yd);
var M2 = (0.0300 - 31.4424*xd + 30.0717*yd) / (0.0241 + 0.2562*xd - 0.7341*yd);
var spdDay = arrayAdd(cieDaySn.S0,arrayAdd(arrayScalar(cieDaySn.S1,M1),arrayScalar(cieDaySn.S2,M2)));
v = pchip(cieDaySn.wavelength, spdDay, wave);
for(var i = 0;i < v.length;i++){
if(isNaN(v[i])){
v[i] = 0;
}
}
}
return v;
}
function pchip(x, y, xx){
var h = arrayDiff(x);
var m = 1;
var del = arrayDiv(arrayDiff(y),h);
var n = x.length;
// First derivatives
var d = pchipslopes(x,y,del);
// Piecewise polynomial coefficients
var d1 = d.slice(0,n-1);
var d2 = d.slice(1,n);
var a1 = arrayScalar(d1,2);
var a = arrayDiv(arraySub(arraySub(arrayScalar(del,3),arrayScalar(d1,2)),d2),h);
var b = arrayDiv(arrayAdd(arraySub(d1,arrayScalar(del,2)),d2),arrayBase(h,2));
// Find Subinterval indicies
var k = arrayRep(1,xx.length);
for(var j = 1;j < x.length;j++){
for(var i = 0;i < xx.length;i++){
if(x[j] <= xx[i]){
k[i] = j;
}
}
}
// Evaluate inerpolant
var s = arraySub(xx,arrayEval(x,k));
var v = arrayAdd(arrayEval(y,k),arrayMul(arrayAdd(arrayEval(d,k),arrayMul(arrayAdd(arrayEval(a,k),arrayMul(arrayEval(b,k),s)),s)),s));
return v;
}
function pchipslopes(x, y, del){
var n = x.length;
var d = arrayRep(0,y.length);
var h = arrayDiff(x);
// k = find(sign(del(1:n-2)).*sign(del(2:n-1)) > 0);
var signDel = arrayDiv(del,arrayAbs(del));
var signDel1 = signDel.slice(0,n-1);
var signDel2 = signDel.slice(1,n);
var signDelTest = arrayMul(signDel1,signDel2);
var k = [];
var kIndex = 0;
for(var i = 0;i < signDelTest.length;i++){
if(signDelTest[i] > 0){
k[kIndex] = i;
kIndex = kIndex + 1;
}
}
for(i = 0; i < k.length; i++){
var hs = h[k[i]] + h[k[i]+1];
var w1 = (h[k[i]] + hs)/(3*hs);
var w2 = (h[k[i]+1] + hs)/(3*hs);
var dmax = Math.max(Math.abs(del[k[i]]),Math.abs(del[k[i]+1]));
var dmin = Math.min(Math.abs(del[k[i]]),Math.abs(del[k[i]+1]));
d[k[i]+1] = dmin/(w1 * (del[k[i]]/dmax) + w2 * (del[k[i]+1]/dmax));
}
d[0] = ((2*h[0]+h[1])*del[0] - h[0]*del[1])/(h[0]+h[1]);
if(d[0]*del[0] < 0){
d[0] = 0;
}else if((del[0]*del[1] < 0) && (Math.abs(d[0]) > Math.abs(del[0]*3))){
d[0] = 3*del[0];
}
d[n-1] = ((2*h[n-2]+h[n-3])*del[n-2] - h[n-2]*del[n-3])/(h[n-2]+h[n-3]);
if(d[n-1]*del[n-1] < 0){
d[n-1] = 0;
}else if((del[n-2]*del[n-3] < 0) && (Math.abs(d[n-1]) > Math.abs(3*del[n-2]))){
d[n-1] = 3*del[n-2];
}
return d;
}
// CIE Day Spectra
// CRI
function cri23Sep05(spd){
// Calculate Correlated Color Temperature, Tc
var Tc = CCTcalc(spd);
// Interpolate bar values
var cie = cie31by1();
var xbar = interp1(cie.wavelength, cie.xbar, spd.wavelength, 0);
var ybar = interp1(cie.wavelength, cie.ybar, spd.wavelength, 0);
var zbar = interp1(cie.wavelength, cie.zbar, spd.wavelength, 0);
// Calculate Reference Source Spectrum, spdref
var spdref = [];
if(Tc < 5000 && Tc > 0){
spdref = blackbodySpectra23Sep05(Tc, spd.wavelength);
}else{
if(Tc <= 25000){
spdref = cieDaySpectra23Sep05(Tc, spd.wavelength);
}else{
}
}
// Load TCS Color Standards
var TCS = Tcs14_23Sep09();
var TCS_1 = {};
for(var iCS in TCS.color_standards){
if(TCS.color_standards.hasOwnProperty(iCS)){
TCS_1[iCS] = interp1(TCS.wavelength,arrayScalar(TCS.color_standards[iCS],1/1000),spd.wavelength,0);
}
}
// Calculate u, v chromaticity coordinates of samples
//test illuminant, uk, vk
var deltaWavelength = createDelta(spd.wavelength);
var X = sumproduct(spd.value, arrayMul(deltaWavelength, xbar));
var Y = sumproduct(spd.value, arrayMul(deltaWavelength, ybar));
var Z = sumproduct(spd.value, arrayMul(deltaWavelength, zbar));
var Yknormal = 100/Y;
var uk = 4*X/(X+15*Y+3*Z);
var vk = 6*Y/(X+15*Y+3*Z);
//reference illuminant, ur, vr.
X = sumproduct(spdref, arrayMul(deltaWavelength, xbar));
Y = sumproduct(spdref, arrayMul(deltaWavelength, ybar));
Z = sumproduct(spdref, arrayMul(deltaWavelength, zbar));
var Yrnormal = 100/Y;
var ur = 4*X/(X+15*Y+3*Z);
var vr = 6*Y/(X+15*Y+3*Z);
// color standards, uri, vri
var Yki = {};
var uki = {};
var vki = {};
var Yri = {};
var uri = {};
var vri = {};
for(iCS in TCS_1){
if(TCS_1.hasOwnProperty(iCS)){
//test illuminant, uki, vki
X = sumproduct(arrayMul(spd.value, TCS_1[iCS]), arrayMul(deltaWavelength, xbar));
Y = sumproduct(arrayMul(spd.value, TCS_1[iCS]), arrayMul(deltaWavelength, ybar));
Z = sumproduct(arrayMul(spd.value, TCS_1[iCS]), arrayMul(deltaWavelength, zbar));
Yki[iCS] = Y*Yknormal;
uki[iCS] = 4*X/(X+15*Y+3*Z);
vki[iCS] = 6*Y/(X+15*Y+3*Z);
//reference illuminant, uri, vri
X = sumproduct(arrayMul(spdref,TCS_1[iCS]), arrayMul(deltaWavelength, xbar));
Y = sumproduct(arrayMul(spdref,TCS_1[iCS]), arrayMul(deltaWavelength, ybar));
Z = sumproduct(arrayMul(spdref,TCS_1[iCS]), arrayMul(deltaWavelength, zbar));
Yri[iCS] = Y*Yrnormal;
uri[iCS] = 4*X/(X+15*Y+3*Z);
vri[iCS] = 6*Y/(X+15*Y+3*Z);
}
}
// Check tolarance for reference illuminant
var DC = Math.sqrt(Math.pow(uk-ur,2)+Math.pow(vk-vr,2));
// Apply adaptive (perceived) color shift
var ck = (4 - uk - 10*vk) / vk;
var dk = (1.708*vk + 0.404 - 1.481*uk) / vk;
var cr = (4 - ur - 10*vr) / vr;
var dr = (1.708*vr + 0.404 - 1.481*ur) / vr;
var cki;
var dki;
var ukip = {};
var vkip = {};
for(iCS in TCS_1){
if(TCS_1.hasOwnProperty(iCS)){
cki = (4 - uki[iCS] - 10*vki[iCS]) / vki[iCS];
dki = (1.708*vki[iCS] + 0.404 - 1.481*uki[iCS]) / vki[iCS];
ukip[iCS] = (10.872 + 0.404*cr/ck*cki - 4*dr/dk*dki) / (16.518 + 1.481*cr/ck*cki - dr/dk*dki);
vkip[iCS] = 5.520 / (16.518 + 1.481*cr/ck*cki - dr/dk*dki);
}
}
// Transformation into 1964 Uniform space coordinates
var Wstarr = {};
var Ustarr = {};
var Vstarr = {};
var Wstark = {};
var Ustark = {};
var Vstark = {};
for(iCS in TCS_1){
if(TCS_1.hasOwnProperty(iCS)){
Wstarr[iCS] = 25*Math.pow(Yri[iCS],0.333333) - 17;
Ustarr[iCS] = 13*Wstarr[iCS]*(uri[iCS] - ur);
Vstarr[iCS] = 13*Wstarr[iCS]*(vri[iCS] - vr);
Wstark[iCS] = 25*Math.pow(Yki[iCS],0.333333) - 17;
Ustark[iCS] = 13*Wstark[iCS]*(ukip[iCS] - ur);
Vstark[iCS] = 13*Wstark[iCS]*(vkip[iCS] - vr);
}
}
// Determination of resultant color shift, delta E
var deltaE = {};
var R = {};
for(iCS in TCS_1){
if(TCS_1.hasOwnProperty(iCS)){
deltaE[iCS] = Math.sqrt(Math.pow(Ustarr[iCS] - Ustark[iCS],2) + Math.pow(Vstarr[iCS] - Vstark[iCS],2) + Math.pow(Wstarr[iCS] - Wstark[iCS],2));
R[iCS] = 100 - 4.6*deltaE[iCS];
}
}
var Ra = (R.R01 + R.R02 + R.R03 + R.R04 + R.R05 + R.R06 + R.R07 + R.R08)/8;
return Ra;
}
// CRI
// Gamut Area
function gamutArea23Sep05(spd){
// Load values
var cie = cie31by1();
var isoTempLines = isoTempLinesNewestFine23Sep05();
var deltaWavelength = createDelta(spd.wavelength);
// Interpolate bar values
var xbar = interp1(cie.wavelength, cie.xbar, spd.wavelength, 0);
var ybar = interp1(cie.wavelength, cie.ybar, spd.wavelength, 0);
var zbar = interp1(cie.wavelength, cie.zbar, spd.wavelength, 0);
// Load TCS Color Standards
var TCS = Tcs14_23Sep09();
var TCS_1 = {};
for(var iCS in TCS.color_standards){
if(TCS.color_standards.hasOwnProperty(iCS)){
TCS_1[iCS] = interp1(TCS.wavelength,arrayScalar(TCS.color_standards[iCS],1/1000),spd.wavelength,0);
}
}
// Calculate u, v chromaticity coordinates of samples under test illuminant
var xki = {};
var yki = {};
var uki = {};
var vki = {};
var ukiprime = {};
var vkiprime = {};
for(iCS in TCS_1){
if(TCS_1.hasOwnProperty(iCS)){
//test illuminant, uki, vki
X = sumproduct(arrayMul(spd.value, TCS_1[iCS]), arrayMul(deltaWavelength, xbar));
Y = sumproduct(arrayMul(spd.value, TCS_1[iCS]), arrayMul(deltaWavelength, ybar));
Z = sumproduct(arrayMul(spd.value, TCS_1[iCS]), arrayMul(deltaWavelength, zbar));
xki[iCS] = X/(X+Y+Z);
yki[iCS] = Y/(X+Y+Z);
uki[iCS] = 4*X/(X+15*Y+3*Z);
vki[iCS] = 6*Y/(X+15*Y+3*Z);
ukiprime[iCS] = uki[iCS];
vkiprime[iCS] = vki[iCS]*1.5;
}
}
// Select sources 1 - 8
var iSource = 0;
var ukprimeArray = [];
var vkprimeArray = [];
for(iCS in TCS_1){
if(TCS_1.hasOwnProperty(iCS)){
ukprimeArray[iSource] = ukiprime[iCS];
vkprimeArray[iSource] = vkiprime[iCS];
iSource = iSource + 1;
}
}
ukprimeArrayS = ukprimeArray.slice(0,8);
vkprimeArrayS = vkprimeArray.slice(0,8);
// Calculate area with selected sources
var ukprimeArraySR1 = ukprimeArrayS.slice(1,8);
ukprimeArraySR1.push(ukprimeArrayS[0]);
var vkprimeArraySR1 = vkprimeArrayS.slice(1,8);
vkprimeArraySR1.push(vkprimeArrayS[0]);
var area = Math.abs(arrayMul(arraySub(ukprimeArraySR1,ukprimeArrayS),arrayAdd(vkprimeArraySR1,vkprimeArrayS)).sum()/2);
var gai = (area/0.007354)*100;
return gai;
}
// Gamut Area
// LXY
function Lxy23Sep05(spd){
var result = {};
// Interpolate bar values
var cie = cie31by1();
var xbar = interp1(cie.wavelength, cie.xbar, spd.wavelength, 0);
var ybar = interp1(cie.wavelength, cie.ybar, spd.wavelength, 0);
var zbar = interp1(cie.wavelength, cie.zbar, spd.wavelength, 0);
var deltaWavelength = createDelta(spd.wavelength);
var X = sumproduct(spd.value, arrayMul(deltaWavelength, xbar));
var Y = sumproduct(spd.value, arrayMul(deltaWavelength, ybar));
var Z = sumproduct(spd.value, arrayMul(deltaWavelength, zbar));
result = {
x: X/(X + Y + Z),
y: Y/(X + Y + Z)
};
return result;
}
// LXY
// Melanopic Lux
function melanopicLux(spd, thickness){
var cs;
var wavelength = spd.wavelength;
var value = spd.value;
var efs = efficienyFunctions(wavelength, thickness);
var deltaWavelength = createDelta(wavelength);
var spdScone = sumproduct(value, arrayMul(deltaWavelength, efs.Scone));
var spdVlambda = sumproduct(value, arrayMul(deltaWavelength, efs.Vlambda));
var spdMelanopsin = sumproduct(value, arrayMul(deltaWavelength, efs.Melanopsin));
var spdVprime = sumproduct(value, arrayMul(deltaWavelength, efs.Vprime));
var rodSat1 = 35000;
var retinalE = [1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000];
var pupilDiam = [7.1, 7, 6.9, 6.8, 6.7, 6.5, 6.3, 5.65, 5, 3.65, 2.3];
var diam = interp1(retinalE,pupilDiam,rodSat1,0);
var rodSat = rodSat1/(Math.pow(diam,2)/4*Math.PI)*Math.PI/1700;
var a1 = 1;
var b1 = 0.0;
var a2 = 0.7000;
var b2 = 0.0;
var k = 0.2616;//0.2883;//0.2616;
var a3 = 3.3000;
cs = a1*spdMelanopsin-b1;
if(cs < 0){
cs = 0;
}
var cla = cs * 852;
return cla;
}
function zeros(n){
var result = [];
for(var i = 0;i < n;i++){
result[i] = 0;
}
return result;
}
// Melanopic Lux
// CLA SPD to Lux
function claspd2lux(cla, spd, thickness){
//Define output
var result;
// Internal variables
var csval = cla/1547.9;
// Parse and normalize SPD input
var spd1wavelength = spd.wavelength;
var spd1value = spdNormalize(spd1wavelength,spd.value);
//var spd1value = spd.value;
// Load efficiency functions and create the delta wavelength
var efs = efficienyFunctions(spd1wavelength, thickness);
var deltaWavelength = createDelta(spd1wavelength);
// Prep spd1efs
var spd1Scone = sumproduct(spd1value, arrayMul(deltaWavelength, efs.Scone));
var spd1Vlambda = sumproduct(spd1value, arrayMul(deltaWavelength, efs.Vlambda));
var spd1Melanopsin = sumproduct(spd1value, arrayMul(deltaWavelength, efs.Melanopsin));
var spd1Vprime = sumproduct(spd1value, arrayMul(deltaWavelength, efs.Vprime));
// Prep rodSat
var rodSat1 = 35000;
var retinalE = [1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000];
var pupilDiam = [7.1, 7, 6.9, 6.8, 6.7, 6.5, 6.3, 5.65, 5, 3.65, 2.3];
var diam = interp1(retinalE,pupilDiam,rodSat1,0);
var rodSat = rodSat1/(Math.pow(diam,2)/4*Math.PI)*Math.PI/1700;
// Create spd1efs
var spd1efs = {
Scone: spd1Scone,
Vlambda: spd1Vlambda,
Melanopsin: spd1Melanopsin,
Vprime: spd1Vprime,
rodSat: rodSat,
};
// Constants
var consts = {
a1: 1,
b1: 0.0,
a2: 0.7000,
b2: 0.0,
k: 0.2616,
a3: 3.3000,
};
// Test B-Y
if((spd1efs.Scone - consts.k*spd1efs.Vlambda) > 0){
var lux0 = 0;
var luxTest = 50.33;
var spd1 = {
wavelength: spd1wavelength,
value: spd1value,
};
var test = {
spd: spd1,
csval: csval,
consts: consts,
spd1efs: spd1efs,
};
// Calculate lux
result = fmin(claspd2luxmin,test,lux0);
//result = claspd2luxmin(test, luxTest);
}else{
result = csval/(consts.a1*spd1efs.Melanopsin-consts.b1);
}
return result;
}
function claspd2luxmin(funcParams, lux){
// Unbox funcParams
var spd = funcParams.spd;
var csval = funcParams.csval;
var consts = funcParams.consts;
var spd1efs = funcParams.spd1efs;
// Calculate cs
var cs1 = consts.a1*spd1efs.Melanopsin*lux - consts.b1;
if(cs1 < 0){
cs1 = 0;
}
var cs2 = consts.a2*(spd1efs.Scone*lux - consts.k*spd1efs.Vlambda*lux) - consts.b2;
if(cs2 < 0){
cs2 = 0;
}
var rod = consts.a3*(1-Math.exp(-spd1efs.Vprime*lux/spd1efs.rodSat));
var cs = (cs1 + cs2 - rod);
if(cs < 0){
cs = 0;
}
// Set Result
var result = Math.pow((csval - cs),2);
//var result = cs;
return result;
}
function claspd2lux2(cla, spd, thickness){
//Define output
var result;
var lux0 = 0;
var test = {
claval: cla,
spd: spd,
thickness: thickness,
};
// Calculate lux
result = fmin(claspd2lux2min,test,lux0);
return result;
}
function claspd2lux2min(funcParams, lux){
// Unbox funcParams
var claval = funcParams.claval;
var spd = funcParams.spd;
var thickness = funcParams.thickness;
// convert spd to abs spd
spd.value = arrayScalar(spd.value,lux);
// Calculate cla
var cla = CLAcalc(spd, thickness);
// Set Result
var result = Math.abs(claval - cla);
return result;
}
// CLA SPD to Lux