-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspectralEfficiency.js
217 lines (194 loc) · 5.75 KB
/
spectralEfficiency.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// Generate Circadian Spectral Response for SPD
function generateCircadianSpectralResponceForSPD(spd, thickness, rod){
/*
% Revised May 11, 2011
% Revised September 26, 2014:
% Conforms to Corrigendum, Lighting Res. Technol. 2012; 44: 516
% for the publication: Rea MS, Figueiro MG, Bierman A, Hamner R.
% Modeling the spectral sensitivity of the human circadian system.
% Lighting Research and Technology 2012; 44(4): 386–396.
% Calculates the circadian stimulus for the given spd
% spd is assumed to be in units of W/m^2
% CS is scaled to be equal to lux for illuminanct A (2856 K)
% spd is two column matrix with wavelength (nm) in the first column
% and spectral irradiance (W/(m^2 nm) in the second column
% OR spd is a column vector and start, end and increment wavelength values
% are specified as additional arguements (e.g. f(spd,400,700,10))
*/
var resultObj = {};
var cs;
var specResp;
var specRespMinusRod;
var wavelength = spd.wavelength;
var value = spd.value;
var efs = efficienyFunctions(wavelength, thickness);
var deltaWavelength = createDelta(wavelength);
var spdScone = sumproduct(value, arrayMul(deltaWavelength, efs.Scone));
var spdVlambda = sumproduct(value, arrayMul(deltaWavelength, efs.Vlambda));
var spdMelanopsin = sumproduct(value, arrayMul(deltaWavelength, efs.Melanopsin));
var spdVprime = sumproduct(value, arrayMul(deltaWavelength, efs.Vprime));
var rodSat1 = 35000;
var retinalE = [1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000];
var pupilDiam = [7.1, 7, 6.9, 6.8, 6.7, 6.5, 6.3, 5.65, 5, 3.65, 2.3];
var diam = interp1(retinalE,pupilDiam,rodSat1,0);
var rodSat = rodSat1/(Math.pow(diam,2)/4*Math.PI)*Math.PI/1700;
var a1 = 1;
var b1 = 0.0;
var a2 = 0.7000;
var b2 = 0.0;
var k = 0.2616;//0.2883;//0.2616;
var a3 = 3.3000;
var cool = false;
if((spdScone - k*spdVlambda) > 0){
var cs1 = a1*spdMelanopsin - b1;
if(cs1 < 0){
cs1 = 0;
}
var cs2 = a2*(spdScone - k*spdVlambda) - b2;
if(cs2 < 0){
cs2 = 0;
}
var Rod = a3*(1-Math.exp(-spdVprime/rodSat));
cs = (cs1 + cs2 - Rod);
if(cs < 0){
cs = 0;
}
specResp = arrayAdd(arraySub2(arrayScalar(efs.Melanopsin,a1),b1),arrayScalar(arraySub2(arraySub2(efs.Scone,arrayScalar(efs.Vlambda,k)),b2),a2)); //(a1*spdMelanopsin - b1) + a2*(spdScone - k*spdVprime - b2);
specRespMinusRod = arraySub2(arrayAdd(arraySub2(arrayScalar(efs.Melanopsin,a1),b1),arraySub2(arraySub2(arrayScalar(efs.Scone,a2),arrayScalar(efs.Vlambda,k)),b2)),arrayScalar(efs.Vprime,a3*rod)); //(a1*spdMelanopsin - b1) + (a2*spdScone - k*spdVlambda - b2) - a3*rod*spdVprime;
cool = true;
}else{
cs = a1*spdMelanopsin-b1;
if(cs < 0){
cs = 0;
}
specResp = arraySub2(arrayScalar(efs.Melanopsin,a1),b1); //a1*spdMelanopsin - b1;
specRespMinusRod = arraySub2(arrayScalar(efs.Melanopsin,a1),b1); //a1*spdMelanopsin - b1;
cool = false;
}
var cla = cs * 1547.9;
var responseDiff = Math.abs(cla - 1547.9 * sumproduct(value, arrayMul(deltaWavelength, specRespMinusRod)));
//return responseDiff;
var result = {
responseDiff: responseDiff,
specRespMinusRod: specRespMinusRod,
cla: cla,
cool: cool,
};
return result;
}
function prepGenerateCircadianSpectralResponceForSPD(funcParams, rod){
var spd = funcParams.spd;
var thickness = funcParams.thickness;
var resultObj = generateCircadianSpectralResponceForSPD(spd, thickness, rod);
return resultObj.responseDiff;
}
// Generate Circadian Spectral Response for SPD
// fmin
function fmin(func, funcParams, xin){
// Initialize Parameters
var rho = 1;
var chi = 2;
var psi = 0.5;
var sigma = 0.5;
var two2np1 = 2;
var one2n = 1;
var maxfun = 200;
var maxiter = 200;
var toShrink = false;
// Set up a simplex near the initial guess
var v = [0, 0];
var fv = [0, 0];
fv[0] = func(funcParams, xin);
var itercount = 0;
var func_evals = 1;
var usual_delta = 0.05;
var zero_term_delta = 0.00025;
// Continue setting up initial simplex
var y = xin;
if(y != 0){
y = (1 + usual_delta)*y;
}else{
y = zero_term_delta;
}
v[1] = y;
fv[1] = func(funcParams,y);
// Sort so v[0] has the lowest function value
if(fv[0] > fv[1]){
fv.reverse();
v.reverse();
}
itercount += 1;
func_evals = 2;
// Main loop
while(func_evals < maxfun && itercount < maxiter){
// Insert break test here
if(isNaN(fv[0]) || fv[0] < 0.0000001){
break;
}
// Compute the reflection point
var xbar = v[0];
var xr = (1 + rho)*xbar - rho*v[1];
x = xr;
var fxr = func(funcParams,x);
func_evals += 1;
// conditional section
if(fxr < fv[0]){
// Calculate the expansion point
var xe = (1 + rho*chi)*xbar - rho*chi*v[1];
x = xe;
var fxe = func(funcParams,x);
func_evals += 1;
if(fxe < fxr){
v[1] = xe;
fv[1] = fxe;
}else{
v[1] = xr;
fv[1] = fxr;
}
}else{
// Perform contraction
if(fxr < fv[1]){
// Perform an outside contraction
var xc = (1 + psi*rho)*xbar - psi*rho*v[1];
x = xc;
var fxc = func(funcParams,x);
func_evals += 1;
if(fxc <= fxr){
v[1] = xc;
fv[1] = fxc;
}else{
// Perform shrink
toShrink = true;
}
}else{
// Perform an inside contraction
var xcc = (1 - psi)*xbar + psi*v[1];
x = xcc;
fxcc = func(funcParams, x);
if(fxcc < fv[1]){
v[1] = xcc;
fv[1] = fxcc;
}else{
// Perform Shrink
toShrink = true;
}
}
if(toShrink){
v[1] = v[0] + sigma*(v[1] - v[0]);
x = v[1];
fv[1] = func(funcParams,x);
func_evals += 1;
}
}
// Sort so v[0] has the lowest function value
if(fv[0] > fv[1]){
fv.reverse();
v.reverse();
}
itercount += 1;
}
x = v[0];
var fval = fv[0];
return x;
}
// fmin