|
| 1 | +from csle_common.util.plotting_util import PlottingUtil |
| 2 | +from scipy import stats |
| 3 | +import numpy as np |
| 4 | + |
| 5 | + |
| 6 | +class TestPlottingUtilSuite: |
| 7 | + """ |
| 8 | + Test suite for plotting util |
| 9 | + """ |
| 10 | + |
| 11 | + def test_running_average(self) -> None: |
| 12 | + """ |
| 13 | + Test the function used to compute the running average of the last N elements of a vector x |
| 14 | +
|
| 15 | + :return: None |
| 16 | + """ |
| 17 | + x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) |
| 18 | + N = 3 |
| 19 | + expected = np.array([1, 2, 3, 3, 4, 5, 6, 7, 8, 9]) |
| 20 | + result = PlottingUtil.running_average(x, N) |
| 21 | + assert result.any() == expected.any() |
| 22 | + |
| 23 | + def test_mean_confidence_interval(self) -> None: |
| 24 | + """ |
| 25 | + Test function that computes confidence intervals |
| 26 | +
|
| 27 | + :return: None |
| 28 | + """ |
| 29 | + data = np.array([1, 2, 3, 4, 5]) |
| 30 | + mean, h = PlottingUtil.mean_confidence_interval(data=data, confidence=0.95) |
| 31 | + expected_mean = np.mean(data) |
| 32 | + expected_se = stats.sem(data) |
| 33 | + expected_h = expected_se * stats.t.ppf((1 + 0.95) / 2.0, len(data) - 1) |
| 34 | + assert expected_mean == mean |
| 35 | + assert expected_h == h |
| 36 | + |
| 37 | + def test_min_max_norm(self) -> None: |
| 38 | + """ |
| 39 | + Test function that computes min-max normalization of a vector |
| 40 | +
|
| 41 | + :return: None |
| 42 | + """ |
| 43 | + vec = np.array([1, 2, 3, 4, 5]) |
| 44 | + min_val = 1 |
| 45 | + max_val = 5 |
| 46 | + expected = np.array([0.0, 0.25, 0.5, 0.75, 1.0]) |
| 47 | + result = PlottingUtil.min_max_norm(vec, max_val, min_val) |
| 48 | + assert result.any() == expected.any() |
0 commit comments