Skip to content

Commit e7137bc

Browse files
committed
Adding chapter 03 code.
1 parent 604608c commit e7137bc

4 files changed

+94
-0
lines changed

code/chapter_01_video_05.py

+14
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
import pandas as pd
2+
import requests
3+
4+
base_link = 'https://pixelford.com/api/image/id/'
5+
6+
pixelford_list = []
7+
8+
for i in range(20):
9+
individual_link = base_link + str(i)
10+
initial_request = requests.get(individual_link)
11+
json_results = initial_request.content
12+
pixelford_list.append(pd.read_json(json_results))
13+
14+
pixelford_list = pd.concat(pixelford_list)

code/chapter_03_video_02.py

+18
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
import matplotlib.pyplot as plt
2+
import numpy as np
3+
import pandas as pd
4+
import seaborn as sns
5+
6+
employees = pd.read_csv('data/level_up_data.csv')
7+
8+
data_types = employees.dtypes
9+
10+
numeric_columns = employees.columns[(data_types == 'float64') | (data_types == 'int64')]
11+
12+
numeric_employees = employees[numeric_columns]
13+
14+
numeric_employees = numeric_employees.drop('separated_ny', axis = 1)
15+
16+
employee_correlations = numeric_employees.corr()
17+
18+
print(employee_correlations)

code/chapter_03_video_03.py

+31
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
import matplotlib.pyplot as plt
2+
import numpy as np
3+
import pandas as pd
4+
import seaborn as sns
5+
6+
employees = pd.read_csv('data/level_up_data.csv')
7+
8+
data_types = employees.dtypes
9+
10+
numeric_columns = employees.columns[(data_types == 'float64') | (data_types == 'int64')]
11+
12+
numeric_employees = employees[numeric_columns]
13+
14+
numeric_employees = numeric_employees.drop('separated_ny', axis = 1)
15+
16+
employee_correlations = numeric_employees.corr()
17+
18+
employee_correlations
19+
20+
mask = np.triu(np.ones_like(employee_correlations, dtype=bool))
21+
22+
f, ax = plt.subplots(figsize=(6, 4))
23+
24+
ax.set_xticklabels(ax.get_xticklabels(), rotation = 30)
25+
26+
ax.set_yticklabels(ax.get_yticklabels(), rotation = 90)
27+
28+
sns.heatmap(employee_correlations, mask=mask, cmap="YlGnBu", center=0)
29+
30+
plt.show()
31+

code/chapter_03_video_04.py

+31
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
import matplotlib.pyplot as plt
2+
import numpy as np
3+
import pandas as pd
4+
import seaborn as sns
5+
6+
employees = pd.read_csv('data/level_up_data.csv')
7+
8+
employees.select_dtypes
9+
10+
def z_score_maker(variable):
11+
variable_mean = variable.mean()
12+
variable_sd = variable.std()
13+
z_score = (variable - variable_mean) / variable_sd
14+
return z_score
15+
16+
viz_variables = ['prior_job_count', 'days_to_separate',
17+
'proportion_401K', 'starting_salary']
18+
19+
for i in viz_variables:
20+
employees[i] = z_score_maker(employees[i])
21+
22+
employees_melted = employees.melt(id_vars = 'department',
23+
value_vars = viz_variables)
24+
25+
g = sns.catplot(x="value", y="variable",
26+
hue="department",
27+
data=employees_melted,
28+
orient="h", height=2, aspect=3, palette="Set3",
29+
kind="violin", dodge=True, cut=0, bw=.2, sharex=False)
30+
31+
plt.show()

0 commit comments

Comments
 (0)