|
| 1 | +import json |
| 2 | +import os |
| 3 | + |
| 4 | +from lightllm.common.build_utils import repair_config |
| 5 | +from lightllm.models.llama.model import LlamaTpPartModel |
| 6 | +from lightllm.models.qwen2.model import Qwen2TpPartModel |
| 7 | +from lightllm.models.qwen2_vl.model import Qwen2VLTpPartModel |
| 8 | +from lightllm.models.qwen2_vl.vision_process import smart_resize |
| 9 | +from lightllm.models.qwen_vl.layer_infer.pre_layer_infer import LlamaMultimodalPreLayerInfer |
| 10 | +from lightllm.models.tarsier2.layer_weights.pre_and_post_layer_weight import ( |
| 11 | + Tarsier2Qwen2PreAndPostLayerWeight, |
| 12 | + Tarsier2LlamaPreAndPostLayerWeight, |
| 13 | +) |
| 14 | +from lightllm.server.multimodal_params import MultimodalParams, ImageItem |
| 15 | +from lightllm.server.core.objs import SamplingParams |
| 16 | + |
| 17 | + |
| 18 | +class Tarsier2Tokenizer: |
| 19 | + def __init__(self, tokenizer=None, image_processor=None, **kwargs): |
| 20 | + self.tokenizer = tokenizer |
| 21 | + self.image_processor = image_processor |
| 22 | + self.image_start_id = kwargs["model_cfg"]["text_config"]["vision_start_token_id"] |
| 23 | + self.image_end_id = kwargs["model_cfg"]["text_config"]["vision_end_token_id"] |
| 24 | + self.image_token_id = kwargs["model_cfg"]["text_config"]["image_token_id"] |
| 25 | + |
| 26 | + def init_imageItem_extral_params( |
| 27 | + self, img: ImageItem, multi_params: MultimodalParams, sampling_params: SamplingParams |
| 28 | + ): |
| 29 | + return |
| 30 | + |
| 31 | + def get_image_token_length(self, img: ImageItem): |
| 32 | + width = img.image_w |
| 33 | + height = img.image_h |
| 34 | + resized_height, resized_width = smart_resize(height=height, width=width) |
| 35 | + self.patch_size = self.image_processor.patch_size |
| 36 | + self.merge_size = self.image_processor.merge_size |
| 37 | + grid_t = 1 |
| 38 | + grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size |
| 39 | + merge_length = self.merge_size ** 2 |
| 40 | + self.token_num = (grid_t * grid_h * grid_w) // merge_length |
| 41 | + self.image_length = self.token_num |
| 42 | + return self.image_length |
| 43 | + |
| 44 | + def encode(self, prompt, multimodal_params: MultimodalParams = None, **kwargs): |
| 45 | + |
| 46 | + origin_ids = self.tokenizer.encode(prompt) |
| 47 | + |
| 48 | + # <img><image_pad></img> -> <img></img> |
| 49 | + origin_ids = [token for token in origin_ids if token != self.image_token_id] |
| 50 | + # <img></img> --> <img>id,id+1...id+num</img> |
| 51 | + input_ids = [] |
| 52 | + image_id = 0 |
| 53 | + start_idx = 0 |
| 54 | + while True: |
| 55 | + try: |
| 56 | + start_idx = origin_ids.index(self.image_start_id, start_idx) |
| 57 | + if start_idx + 1 >= len(origin_ids): |
| 58 | + break |
| 59 | + if origin_ids[start_idx + 1] == self.image_end_id: |
| 60 | + input_ids.extend(origin_ids[: start_idx + 1]) |
| 61 | + token_id = multimodal_params.images[image_id].token_id |
| 62 | + token_num = multimodal_params.images[image_id].token_num |
| 63 | + input_ids.extend(range(token_id, token_id + token_num)) |
| 64 | + input_ids.append(self.image_end_id) |
| 65 | + origin_ids = origin_ids[start_idx + 2 :] |
| 66 | + start_idx = 0 |
| 67 | + image_id += 1 |
| 68 | + else: |
| 69 | + raise ValueError("image token error") |
| 70 | + except ValueError: |
| 71 | + break |
| 72 | + input_ids.extend(origin_ids[start_idx:]) |
| 73 | + return input_ids |
| 74 | + |
| 75 | + def __getattr__(self, name): |
| 76 | + if name != "encode": |
| 77 | + return getattr(self.tokenizer, name) |
| 78 | + return self.encode |
| 79 | + |
| 80 | + pass |
| 81 | + |
| 82 | + |
| 83 | +class Tarsier2Qwen2TpPartModel(Qwen2TpPartModel): |
| 84 | + # weight class |
| 85 | + pre_and_post_weight_class = Tarsier2Qwen2PreAndPostLayerWeight |
| 86 | + |
| 87 | + # infer class |
| 88 | + pre_layer_infer_class = LlamaMultimodalPreLayerInfer |
| 89 | + |
| 90 | + def __init__(self, kvargs): |
| 91 | + super().__init__(kvargs) |
| 92 | + return |
| 93 | + |
| 94 | + def _init_config(self): |
| 95 | + with open(os.path.join(self.weight_dir_, "config.json"), "r") as json_file: |
| 96 | + self.config = json.load(json_file)["text_config"] |
| 97 | + # rename keys |
| 98 | + repair_config(self.config, same_names=["num_attention_heads", "n_head"]) |
| 99 | + repair_config(self.config, same_names=["hidden_size", "n_embd", "n_embed"]) |
| 100 | + repair_config(self.config, same_names=["num_hidden_layers", "n_layer"]) |
| 101 | + return |
| 102 | + |
| 103 | + |
| 104 | +class Tarsier2Qwen2VLTpPartModel(Qwen2VLTpPartModel): |
| 105 | + # weight class |
| 106 | + pre_and_post_weight_class = Tarsier2Qwen2PreAndPostLayerWeight |
| 107 | + |
| 108 | + # infer class |
| 109 | + pre_layer_infer_class = LlamaMultimodalPreLayerInfer |
| 110 | + |
| 111 | + def __init__(self, kvargs): |
| 112 | + super().__init__(kvargs) |
| 113 | + return |
| 114 | + |
| 115 | + def _init_config(self): |
| 116 | + with open(os.path.join(self.weight_dir_, "config.json"), "r") as json_file: |
| 117 | + self.config = json.load(json_file)["text_config"] |
| 118 | + # rename keys |
| 119 | + repair_config(self.config, same_names=["num_attention_heads", "n_head"]) |
| 120 | + repair_config(self.config, same_names=["hidden_size", "n_embd", "n_embed"]) |
| 121 | + repair_config(self.config, same_names=["num_hidden_layers", "n_layer"]) |
| 122 | + return |
| 123 | + |
| 124 | + |
| 125 | +class Tarsier2LlamaTpPartModel(LlamaTpPartModel): |
| 126 | + |
| 127 | + pre_and_post_weight_class = Tarsier2LlamaPreAndPostLayerWeight |
| 128 | + |
| 129 | + # infer class |
| 130 | + pre_layer_infer_class = LlamaMultimodalPreLayerInfer |
| 131 | + |
| 132 | + def __init__(self, kvargs): |
| 133 | + super().__init__(kvargs) |
| 134 | + return |
| 135 | + |
| 136 | + def _init_config(self): |
| 137 | + with open(os.path.join(self.weight_dir_, "config.json"), "r") as json_file: |
| 138 | + self.config = json.load(json_file)["text_config"] |
| 139 | + # rename keys |
| 140 | + repair_config(self.config, same_names=["num_attention_heads", "n_head"]) |
| 141 | + repair_config(self.config, same_names=["hidden_size", "n_embd", "n_embed"]) |
| 142 | + repair_config(self.config, same_names=["num_hidden_layers", "n_layer"]) |
| 143 | + return |
0 commit comments