-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
825 lines (684 loc) · 23.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
import re
import sys
import os
import time
import json
import asyncio
import logging
import requests
import google.generativeai as genai
from bs4 import BeautifulSoup
import httpx
from aiogram.webhook.aiohttp_server import (
BaseRequestHandler,
SimpleRequestHandler,
setup_application
)
from aiogram.client.default import DefaultBotProperties
from aiogram import Bot, Dispatcher, Router
from aiogram.enums import ParseMode
from aiogram.filters import CommandStart, Filter
from aiogram import F
from aiogram.utils.markdown import hbold
from aiogram.utils.keyboard import ReplyKeyboardBuilder
from aiogram.fsm.state import State, StatesGroup
from aiogram.fsm.context import FSMContext
from aiogram.types import (
Update,
CallbackQuery,
PollAnswer,
KeyboardButton,
Message,
ReplyKeyboardMarkup,
ReplyKeyboardRemove,
)
from aiohttp import web
from aiogram.client.session.aiohttp import AiohttpSession
####################### get the enviroment variables #######################
# get the credentials from env vars
BOT_TOKEN = os.getenv('BOT_TOKEN')
GOOGLE_AI_API_KEY = os.getenv('GOOGLE_AI_API_KEY')
BASE_WEBHOOK_URL = os.getenv('BASE_WEBHOOK_URL')
# Webserver settings
WEB_SERVER_HOST = "0.0.0.0"
# Port for incoming request
WEB_SERVER_PORT = 8080
# Path to webhook route, on which Telegram will send requests
WEBHOOK_PATH = "/webhook"
####################### google AI API settings #######################
genai.configure(api_key=GOOGLE_AI_API_KEY)
model_answering = genai.GenerativeModel('gemini-1.5-pro-002')
generation_config = {'temperature': 0}
PROMPT = """
You are a helpful and informative bot that help researchers to find and
summarize results from medicine and biology article's abstract that included below.
For given abstract explore all information and
return short summary text about 600 symbols (+-100 symbols depends of content).
Your summary must contains all significant results, prefer results
that represented by numbers, for example:
"N participants in K studies were included in analisys and
shows factor X decrease risk of state Y for 30% (CI 25-35, p < 0.01)"
Please dont write any additional titles, oly list of results separated by "-"
ABSTRACT: {abstract}
"""
####################### PARSERS AND DATA PROCESSING #######################
PARSERS_CHAPTER = None
async def get_html_pm_search_results(
query: str,
n_results: int = 10,
custom_url: str = None,
) -> str:
"""
Takes query or url of the pubmed search and returns
By default we get the results from this url:
https://pubmed.ncbi.nlm.nih.gov/?term={query}&filter=simsearch2.ffrft&filter=pubt.meta-analysis&filter=pubt.systematicreview&size={n_results}
That give us:
?term={query} -- here your query
filter=simsearch2.ffrft -- filter only full free text
filter=pubt.systematicreview -- filter systematicreview
n_results -- here desired amount of results must one of: 10, 20, 50, 100, 200
If you want you can use your ouwn result link with your desired filters
for that copy it from adress bar your brauser and then
set in custom_url parameter (must start with https://pubmed.ncbi.nlm.nih.gov/?term=').
"""
if int(n_results) not in [10, 20, 50, 100, 200]:
raise ValueError('n_results must one of: 10, 20, 50, 100, 200')
if custom_url is None:
query = query.replace(' ', '+')
url = (
"""
https://pubmed.ncbi.nlm.nih.gov/
?term={query}
&filter=simsearch2.ffrft
&filter=pubt.meta-analysis
&filter=pubt.systematicreview
&size={n_results}
"""
.format_map({'query': query, 'n_results': n_results})
.replace('\n', '')
.replace(' ', '')
)
if custom_url is not None:
# replace n results to n_results
pattern = r"&size=(\d+)"
# Replace the matched digits with the given value
custom_url = re.sub(pattern, f"&size={n_results}", custom_url)
if custom_url.startswith('https://pubmed.ncbi.nlm.nih.gov/?term='):
url = custom_url
else:
raise Exception('url must start with https://pubmed.ncbi.nlm.nih.gov/?term=')
# response = requests.get(url)
# Make an async GET request using httpx
async with httpx.AsyncClient() as client:
response = await client.get(url)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Access the HTML content of the webpage
return response.text
else:
print("Failed to retrieve HTML content. Status code:", response.status_code)
async def get_search_results_texts(
query: str,
n_results: int = 10,
custom_link: str = None,
) -> tuple[str, list[str], list[str]]:
if query is not None:
html_content = await get_html_pm_search_results(
query=query,
n_results=n_results,
)
if custom_link is not None:
html_content = await get_html_pm_search_results(
query=None,
n_results=n_results,
custom_url=custom_link
)
# Parse the HTML
soup = BeautifulSoup(html_content, "html.parser")
# Extract desired information
pm_ids = [x.get('href').strip('/') for x in soup.find_all('a', class_='docsum-title')]
titles = [x.text.strip() for x in soup.find_all("a", class_="docsum-title")]
authors = [x.text.strip() for x in soup.find_all("span", class_="docsum-authors full-authors")]
journal_citations = [x.text.strip() for x in soup.find_all("span", class_="docsum-journal-citation full-journal-citation")]
snippets = [x.text.strip() for x in soup.find_all("div", class_="full-view-snippet")]
# create short version of the titles for dispaying as poll options
dates = [
x.split('.')[1].strip(' ')[:8]
for x in
journal_citations
]
jornals = [
x.split('.')[0].strip(' ')
for x in
journal_citations
]
jornals_cut = [
x.split('.')[0].strip(' ')[:19]
for x in
journal_citations
]
journals_dates_cut = [
x + '. ' + y
for x, y in zip(jornals_cut, dates)
]
journals_dates = [
x + '. ' + y
for x, y in zip(jornals, dates)
]
titles_cut = [
x[:68] + '; \n' + y
for x, y in zip(
titles,
journals_dates_cut
)
]
titles = [
x[:68] + '; \n' + y
for x, y in zip(
titles,
journals_dates
)
]
return pm_ids, titles, titles_cut
async def get_pm_abstract_from_pm_id(
pm_id: str
) -> str:
pm_url = f'https://pubmed.ncbi.nlm.nih.gov/{pm_id}/'
# response = requests.get(pm_url)
# Make an async GET request using httpx
async with httpx.AsyncClient() as client:
response = await client.get(pm_url)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Access the HTML content of the webpage
html_content = response.text
else:
print(pm_url)
print("Failed to retrieve HTML content. Status code:", response.status_code)
# Parse the HTML
soup = BeautifulSoup(html_content, "html.parser")
# Find the abstract content
abstract_content = soup.find('div', class_='abstract-content selected')
abstract_text = [x.text.strip() for x in abstract_content.find_all('p')]
# Combine all text into a single string
abstract_text = '\n'.join(abstract_text)
abstract_text = '\n'.join(
[
x for x in abstract_text.split('\n')
if x.isspace() == False
]
)
return abstract_text
def pubmed_parsed_abstracts_texts_joining(
pm_ids: list[str],
titles: list[str],
journal_citations: list[str],
abstracts: list[str],
) -> str:
"""
Takes lists of the values and returns joned string
"""
return '\n\n'.join(
[
"""
PUBMED_ID: {pm_id}
TITLE: {title}
CITATION: {citations}
ABSTRACT: {abstract}
"""
.format_map(
{
'pm_id': pm_id,
'title': title,
'citations': citations,
'abstract': abstract
}
)
for pm_id,
title,
citations,
abstract
in zip(
pm_ids,
titles,
journal_citations,
abstracts
)
]
)
async def get_summary_from_abstract(
abstract: str,
model_answering: genai.GenerativeModel,
generation_config: dict,
prompt_to_summarize_pubmed_abstracts: str = PROMPT,
n_tryes: int = 3,
) -> str:
try:
summary = await model_answering.generate_content_async(
contents=prompt_to_summarize_pubmed_abstracts.format_map({'abstract': abstract}),
generation_config=generation_config
)
result = ' '.join([part.text for part in summary.parts])
except:
summary = None
n_try = 0
while summary is None and n_try < n_tryes:
try:
summary = await model_answering.generate_content_async(
contents=prompt_to_summarize_pubmed_abstracts.format_map({'abstract': abstract}),
generation_config=generation_config
)
except:
time.sleep(3)
n_try += 1
if summary is None:
result = ''
else:
result = ' '.join([part.text for part in summary.parts])
if len(result) == 0:
result = abstract
return result
def replace_html_tags(
text: str,
pairs: dict[str, str] = {
'<': '<',
'>': '>',
'&': '&'
},
) -> str:
for key, value in pairs.items():
text = text.replace(key, value)
return text
def result_formatting(
titles: list[str],
pm_ids: list[str],
summaries: list[str],
separator: str = '-' * 50,
max_lenght: int = 4096,
chars_to_escape: list[str] = [
'_', '*', '`'
],
escape_symbol: str='\\'
) -> list[str]:
"""Formatting text and split into chunks"""
# Create a regular expression pattern to match any character in the list
pattern = r"[" + re.escape("".join(chars_to_escape)) + "]"
# Replace matched characters with the escape symbol and the character itself
titles = [
re.sub(pattern, lambda match: escape_symbol + match.group(0), title)
for title in titles
]
summaries = [
re.sub(pattern, lambda match: escape_symbol + match.group(0), summary)
for summary in summaries
]
result = '\n'.join([
'*' + titles[index] + '*\n'
+
'_SUMMARY_: \n'
+ summary + '\n'
+
'_PUBMED ID_: '
+ f'[{pm_ids[index]}](https://pubmed.ncbi.nlm.nih.gov/{pm_ids[index]}/)' + '\n'
+ separator
for index, summary in zip(
list(range(len(pm_ids))),
summaries
)
])
result_lenght = len(result)
if result_lenght > max_lenght:
n_chunks = (
(result_lenght // max_lenght) + 1
if
result_lenght % max_lenght != 0
else
(result_lenght // max_lenght)
)
n_results = len(result.split(separator))
n_results_in_chunk = (n_results // n_chunks)
if n_results % n_chunks != 0:
n_results_in_chunk += 1
chunks = [
(separator).join(result.split(separator)[start: start + n_results_in_chunk])
for start in list(range(0, n_results, n_results_in_chunk))
]
else: chunks = [result]
return chunks
def get_progress_bar(
len_results: int,
n_processed_results: int,
progress_lenght: int = 20,
filled_block: str = '▓',
empty_block: str = '░'
) -> str:
progress_lenght = 20
n_results = len_results
if progress_lenght % n_results == 0:
step_size = progress_lenght // n_results
else:
step_size = (progress_lenght // n_results) + 1
return (
f'{"".join([filled_block] * n_processed_results * step_size)}'
f'{"".join([empty_block] * ((n_results - n_processed_results) * step_size))}'
)
####################### TG BOT LOGIC #######################
TG_BOT_LOGIC_CHAPTER = None
async def send_pool(
chat_id: int,
question: str,
options: list[str],
BOT_TOKEN: str,
allows_multiple_answers: bool = True,
METHOD_NAME: str = "SendPoll",
) -> None:
poll = {
"chat_id":chat_id,
"question": question,
"options": options,
"allows_multiple_answers": allows_multiple_answers,
'is_anonymous': False
}
base_url = f'https://api.telegram.org/bot{BOT_TOKEN}/{METHOD_NAME}'
headers = {"Content-Type": "application/json"}
response = requests.post(base_url, headers=headers, json=poll)
class MyFilter(Filter):
def __init__(self, my_text: str) -> None:
self.my_text = my_text
async def __call__(self, message: Message) -> bool:
return message.text == self.my_text
class Form(StatesGroup):
chat_id = State()
query = State()
query_results = State()
custom_link = State()
pm_ids = State()
titles = State()
titles_cut = State()
journal_citations = State()
abstracts = State()
summary = State()
form_router = Router()
def keyboard_start():
builder = ReplyKeyboardBuilder()
builder.button(text='Perform search and summarize results')
builder.button(text='Summarize by my link')
builder.adjust(1)
return builder.as_markup()
def keyboard_check_search():
builder = ReplyKeyboardBuilder()
builder.button(text='Start new search')
builder.adjust(1)
return builder.as_markup()
def keyboard_error_link():
builder = ReplyKeyboardBuilder()
builder.button(text='Start new search')
builder.button(text='Summarize by my link')
builder.adjust(1)
return builder.as_markup()
@form_router.message(CommandStart())
async def welcome(message: Message, state: FSMContext):
user_name = message.from_user.first_name
await message.answer(
text=(
f'*Hey, {user_name}!* \n'
'I\'m a helpful AI summarizer for PubMed articles.\n'
'I can perform PubMed searches based on your query to '
'retrieve full-text results of the meta-analyses and '
'systematic reviews. '
'I can then summarize their main results using Gemini-LLM by Google AI.\n\n'
'Or, you can send me a link to your search results,'
' and I can summarize the articles from it'
' Choose the option below:'
),
reply_markup=keyboard_start(),
parse_mode=ParseMode.MARKDOWN
)
@form_router.message(F.text == 'Summarize by my link')
async def request_custom_link(message: Message, state: FSMContext):
await state.set_state(Form.custom_link)
await message.answer(
'Paste your link below (must start with https://pubmed.ncbi.nlm.nih.gov/?term=)',
reply_markup=ReplyKeyboardRemove()
)
@form_router.message(Form.custom_link)
async def get_pubmed_results_from_custom_link(message: Message, state: FSMContext):
custom_link = message.text
if custom_link.startswith('https://pubmed.ncbi.nlm.nih.gov/?term='):
output_text = 'Start performing pubmed search by your query, please wait'
await message.answer(output_text, reply_markup=keyboard_check_search())
else:
output_text = 'url must start with https://pubmed.ncbi.nlm.nih.gov/?term='
await message.answer(output_text, reply_markup=keyboard_error_link())
await state.clear()
return
await state.update_data(custom_link=custom_link)
await state.update_data(chat_id=message.chat.id)
await state.set_state(Form.query_results)
##### search process and return results
pm_ids, titles, titles_cut = await get_search_results_texts(
query=None,
custom_link=message.text
)
chat_id = message.chat.id
await state.update_data(pm_ids=pm_ids)
await state.update_data(titles=titles)
await state.update_data(titles_cut=titles_cut)
await send_pool(
chat_id=chat_id,
question='Select aritcles and press vote for summarizing',
options=titles_cut,
BOT_TOKEN=BOT_TOKEN,
)
@form_router.message(
F.text.in_({
'Perform search and summarize results',
'Start new search'
})
)
async def request_the_query(message: Message, state: FSMContext):
output_text = 'Past search query below'
await state.set_state(Form.query)
await message.answer(
output_text,
reply_markup=ReplyKeyboardRemove()
)
@form_router.message(Form.query)
async def get_pubmed_results_from_query(message: Message, state: FSMContext):
output_text = 'Start performing pubmed search by your query, please wait'
await state.update_data(query=message.text)
await state.update_data(chat_id=message.chat.id)
await state.set_state(Form.query_results)
await message.answer(output_text, reply_markup=keyboard_check_search())
##### search process and return results
pm_ids, titles, titles_cut = await get_search_results_texts(
query=message.text
)
chat_id = message.chat.id
await state.update_data(pm_ids=pm_ids)
await state.update_data(titles=titles)
await state.update_data(titles_cut=titles_cut)
await send_pool(
chat_id=chat_id,
question='Select aritcles and press vote for summarizing',
options=titles_cut,
BOT_TOKEN=BOT_TOKEN,
)
@form_router.poll_answer()
async def summarize_by_poll_answer_reaction(
poll_answer: PollAnswer,
state: FSMContext
):
user_id = poll_answer.user.id
data = await state.get_data()
chat_id = data['chat_id']
pm_ids = data['pm_ids']
titles = data['titles']
if poll_answer is not None:
chosen_options = [str(x) for x in poll_answer.option_ids]
else:
print('poll_answer is None')
return
bot = poll_answer.bot
await bot.send_message(
chat_id=chat_id,
text=f"Your choices: {', '.join(chosen_options)}"
)
len_results = len(chosen_options)
n_processed_results = 0
progress_bar = get_progress_bar(
len_results=len_results,
n_processed_results=n_processed_results
)
message = await bot.send_message(
chat_id=chat_id,
text=(
'Grabbing articles abstracts\n'
f'{progress_bar} {n_processed_results} / {len_results}'
)
)
abstracts = []
for index in poll_answer.option_ids:
abstracts.append(await get_pm_abstract_from_pm_id(pm_id=pm_ids[index]))
n_processed_results += 1
progress_bar = get_progress_bar(
len_results=len_results,
n_processed_results=n_processed_results
)
await message.edit_text(
text=(
'Grabbing articles abstracts\n'
f'{progress_bar} {n_processed_results} / {len_results}'
)
)
await state.update_data(abstracts=abstracts)
len_results = len(chosen_options)
n_processed_results = 0
progress_bar = get_progress_bar(
len_results=len_results,
n_processed_results=n_processed_results
)
message = await bot.send_message(
chat_id=chat_id,
text=(
'Summarizing\n'
f'{progress_bar} {n_processed_results} / {len_results}'
)
)
summaries = []
for abstract in abstracts:
summaries.append(
await get_summary_from_abstract(
abstract=abstract,
model_answering=model_answering,
generation_config=generation_config,
)
)
n_processed_results += 1
progress_bar = get_progress_bar(
len_results=len_results,
n_processed_results=n_processed_results
)
await message.edit_text(
text=(
'Summarizing\n'
f'{progress_bar} {n_processed_results} / {len_results}'
)
)
results = result_formatting(
titles=[titles[x] for x in poll_answer.option_ids],
pm_ids=[pm_ids[x] for x in poll_answer.option_ids],
summaries=summaries,
)
for chunk in results:
try:
await bot.send_message(
chat_id=chat_id,
text=chunk,
parse_mode=ParseMode.MARKDOWN,
reply_markup=keyboard_start()
)
except:
print('Not sented:')
print(chunk)
@form_router.message(F.text == 'Summarize abstracts for all results')
async def summarize_all_results(message: Message, state: FSMContext):
data = await state.get_data()
chat_id = data['chat_id']
pm_ids = data['pm_ids']
titles = data['titles']
chosen_options = [str(x) for x in range(len(pm_ids))]
await message.answer(text=f"Your choices: {', '.join(chosen_options)}")
await message.answer(
text='Start grabbing articles abstracts (it took about 10s)'
)
abstracts = [
await get_pm_abstract_from_pm_id(pm_id=pm_ids[index])
for index in range(len(pm_ids))
]
await state.update_data(abstracts=abstracts)
await message.answer(
text='Start summarizing (it took about 20s)'
)
summaries = [
await get_summary_from_abstract(
abstract=abstract,
model_answering=model_answering,
generation_config=generation_config,
)
for abstract in abstracts
]
results = result_formatting(
titles=titles,
pm_ids=pm_ids,
summaries=summaries,
)
for chunk in results:
try:
await message.answer(
chunk,
parse_mode=ParseMode.MARKDOWN,
reply_markup=keyboard_start()
)
except:
print('Not sented:')
print(chunk)
#################################### Bot settings ####################################
BOT_SETTINGS_CHAPTER = None
# Set the webhook for recieving updates in your url wia HTTPS POST with JSONs
async def on_startup(bot: Bot) -> None:
# If you have a self-signed SSL certificate, then you will need to send a public
# certificate to Telegram, for this case we'll use google cloud run service so
# it not required to send sertificates
await bot.set_webhook(
f"{BASE_WEBHOOK_URL}{WEBHOOK_PATH}",
)
def main() -> None:
# Dispatcher is a root router
dp = Dispatcher()
dp.include_router(form_router)
# Register startup hook to initialize webhook
dp.startup.register(on_startup)
# Initialize Bot instance with a default parse mode
# which will be passed to all API calls
bot = Bot(BOT_TOKEN, default=DefaultBotProperties())
# And the run events dispatching
# Create aiohttp.web.Application instance
app = web.Application()
# Create an instance of request handler,
# aiogram has few implementations for different cases of usage
# In this example we use SimpleRequestHandler
# which is designed to handle simple cases
webhook_requests_handler = SimpleRequestHandler(
dispatcher=dp,
bot=bot,
)
# Register webhook handler on application
webhook_requests_handler.register(app, path=WEBHOOK_PATH)
# Mount dispatcher startup and shutdown hooks to aiohttp application
setup_application(app, dp, bot=bot)
# And finally start webserver
web.run_app(app, host=WEB_SERVER_HOST, port=WEB_SERVER_PORT)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
main()