You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
# Otherwise, you need to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/InternVL2_5-1B'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
# pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=False)
# pure-text conversation (纯文本对话)
# question = 'Hello, who are you?'
# response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# question = 'Can you tell me a story?'
# response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# # single-image single-round conversation (单图单轮对话)
# question = '<image>\nPlease describe the image shortly.'
# response = model.chat(tokenizer, pixel_values, question, generation_config)
# print(f'User: {question}\nAssistant: {response}')
# # single-image multi-round conversation (单图多轮对话)
# question = '<image>\nPlease describe the image in detail.'
# response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# question = 'Please write a poem according to the image.'
# response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
# pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
# pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
# pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
# question = '<image>\nDescribe the two images in detail.'
# response, history = model.chat(tokenizer, pixel_values, question, generation_config,
# history=None, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# question = 'What are the similarities and differences between these two images.'
# response, history = model.chat(tokenizer, pixel_values, question, generation_config,
# history=history, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
# pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
# pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
# pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
# num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
# question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
# response, history = model.chat(tokenizer, pixel_values, question, generation_config,
# num_patches_list=num_patches_list,
# history=None, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# question = 'What are the similarities and differences between these two images.'
# response, history = model.chat(tokenizer, pixel_values, question, generation_config,
# num_patches_list=num_patches_list,
# history=history, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
# # batch inference, single image per sample (单图批处理)
# pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
# pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
# num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
# pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
# questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
# responses = model.batch_chat(tokenizer, pixel_values,
# num_patches_list=num_patches_list,
# questions=questions,
# generation_config=generation_config)
# for question, response in zip(questions, responses):
# print(f'User: {question}\nAssistant: {response}')
# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
video_path = 'D:\\7461106550472543515.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
# question = video_prefix + 'What is the red panda doing?'
question = video_prefix + 'Describe this video in detail. Don\'t repeat.'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
# response, history = model.chat(tokenizer, pixel_values, question, generation_config,
# num_patches_list=num_patches_list, history=None, return_history=True)
# print(f'User: {question}\nAssistant: {response}')
question = 'Describe this video in detail. Don\'t repeat.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
modeling_internvl_chat.py", line 333, in generate
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
~~~~~~~~~~~~^^^^^^^^^^
RuntimeError: shape mismatch: value tensor of shape [2048, 896] cannot be broadcast to indexing result of shape [256, 896]
Suggest a potential alternative/fix
No response
The text was updated successfully, but these errors were encountered:
📚 The doc issue
modeling_internvl_chat.py", line 333, in generate
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
~~~~~~~~~~~~^^^^^^^^^^
RuntimeError: shape mismatch: value tensor of shape [2048, 896] cannot be broadcast to indexing result of shape [256, 896]
Suggest a potential alternative/fix
No response
The text was updated successfully, but these errors were encountered: