-
Notifications
You must be signed in to change notification settings - Fork 819
/
Copy pathatari_model.py
executable file
·90 lines (80 loc) · 2.85 KB
/
atari_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import parl
import paddle.nn as nn
import paddle.nn.functional as F
class AtariModel(parl.Model):
def __init__(self, act_dim):
super(AtariModel, self).__init__()
self.conv1 = nn.Conv2D(
in_channels=4, out_channels=16, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2D(
in_channels=16,
out_channels=32,
kernel_size=4,
stride=2,
padding=2)
self.conv3 = nn.Conv2D(
in_channels=32,
out_channels=256,
kernel_size=11,
stride=1,
padding=0)
self.flatten = nn.Flatten()
# Need to calc the size of the in_features according to the input image.
# The default size of the input image is 42 * 42
self.policy_fc = nn.Linear(
in_features=256,
out_features=act_dim,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal()),
bias_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal()))
self.value_fc = nn.Linear(
in_features=256,
out_features=1,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal()),
bias_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal()))
def policy(self, obs):
"""
Args:
obs: A float32 tensor of shape [B, C, H, W]
Returns:
policy_logits: B * ACT_DIM
"""
obs = obs / 255.0
conv1 = F.relu(self.conv1(obs))
conv2 = F.relu(self.conv2(conv1))
conv3 = F.relu(self.conv3(conv2))
flatten = self.flatten(conv3)
policy_logits = self.policy_fc(flatten)
return policy_logits
def value(self, obs):
"""
Args:
obs: A float32 tensor of shape [B, C, H, W]
Returns:
values: B
"""
obs = obs / 255.0
conv1 = F.relu(self.conv1(obs))
conv2 = F.relu(self.conv2(conv1))
conv3 = F.relu(self.conv3(conv2))
flatten = self.flatten(conv3)
values = self.value_fc(flatten)
values = paddle.squeeze(values, axis=1)
return values