-
Notifications
You must be signed in to change notification settings - Fork 352
/
Copy pathrun.py
149 lines (132 loc) · 5.25 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import argparse
from tqdm import tqdm
import paddle
from paddleslim.common import load_config
from paddleslim.auto_compression import AutoCompression
from dataset import COCOValDataset, COCOTrainDataset, yolo_image_preprocess
from post_process import YOLOPostProcess, coco_metric
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='output',
help="directory to save compressed model.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
return parser
def reader_wrapper(reader, input_name='x2paddle_images'):
def gen():
for data in reader:
yield {input_name: data[0]}
return gen
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
bboxes_list, bbox_nums_list, image_id_list = [], [], []
postprocess = YOLOPostProcess(
score_threshold=0.001,
nms_threshold=0.65,
multi_label=True,
nms_top_k=global_config.get('nms_num_top_k', 30000))
with tqdm(
total=len(val_loader),
bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for data in val_loader:
data_all = {k: np.array(v) for k, v in data.items()}
outs = exe.run(
compiled_test_program,
feed={test_feed_names[0]: data_all['image']},
fetch_list=test_fetch_list,
return_numpy=False)
res = postprocess(np.array(outs[0]), data_all['scale_factor'])
bboxes_list.append(res['bbox'])
bbox_nums_list.append(res['bbox_num'])
image_id_list.append(np.array(data_all['im_id']))
t.update()
map_res = coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list)
return map_res[0]
def main():
global global_config
all_config = load_config(FLAGS.config_path)
assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
global_config = all_config["Global"]
input_name = 'x2paddle_image_arrays' if global_config[
'arch'] == 'YOLOv6' else 'x2paddle_images'
if global_config['image_path'] != 'None':
assert os.path.exists(global_config['image_path'])
paddle.vision.image.set_image_backend('cv2')
train_dataset = paddle.vision.datasets.ImageFolder(
global_config['image_path'], transform=yolo_image_preprocess)
batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=1, shuffle=True, drop_last=True)
train_loader = paddle.io.DataLoader(
train_dataset, batch_sampler=batch_sampler, num_workers=0)
train_loader = reader_wrapper(train_loader, input_name=input_name)
eval_func = None
else:
dataset = COCOTrainDataset(
dataset_dir=global_config['coco_dataset_dir'],
image_dir=global_config['coco_train_image_dir'],
anno_path=global_config['coco_train_anno_path'],
input_name=input_name)
batch_sampler = paddle.io.DistributedBatchSampler(
dataset, batch_size=1, shuffle=True, drop_last=True)
train_loader = paddle.io.DataLoader(
dataset, batch_size=1, num_workers=0, batch_sampler=batch_sampler)
if paddle.distributed.get_rank() == 0:
eval_func = eval_function
global val_loader
dataset = COCOValDataset(
dataset_dir=global_config['coco_dataset_dir'],
image_dir=global_config['coco_val_image_dir'],
anno_path=global_config['coco_val_anno_path'])
global anno_file
anno_file = dataset.ann_file
val_loader = paddle.io.DataLoader(
dataset,
batch_size=1,
shuffle=False,
drop_last=False,
num_workers=0)
else:
eval_func = None
ac = AutoCompression(
model_dir=global_config["model_dir"],
train_dataloader=train_loader,
save_dir=FLAGS.save_dir,
config=all_config,
eval_callback=eval_func)
ac.compress()
ac.export_onnx()
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
paddle.set_device(FLAGS.devices)
main()